現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:以循環伏安法進行血漿蛋白與氧化銥共沉積 [以論文名稱查詢館藏系統]
論文英文名稱:Cyclic voltammetry electrodeposition of plasma proteins/iridium oxide hybrid film [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:材料科學與工程研究所
畢業學年度:106
畢業學期:第二學期
出版年度:107
中文姓名:黃致寧
英文姓名:Chih-Ning Huang
研究生學號:105788014
學位類別:碩士
語文別:中文
口試日期:2018/07/10
論文頁數:68
指導教授中文名:陳柏均
指導教授英文名:Po-Chun Chen
口試委員中文名:鍾仁傑;黃薇蓁
中文關鍵詞:氧化銥電鍍共沉積藥物釋放
英文關鍵詞:Iridium oxideCo-electrodepositionDrug release
論文中文摘要:生醫電子學近期引起了許多關注,神經刺激電極可以植入體內,以電刺激來治療神經系統的疾病。理想刺激電極須具備穩定性、安全性和注入電荷以產生響應的能力。氧化銥具有低電化學阻抗,並可以提供電極界面足夠的電荷進行刺激,因此可做為神經刺激電極的材料。此外,氧化銥在熱力學和化學性質上都具有穩定性。
電沉積氧化銥技術具有簡單、成本低廉、可在低溫下操作等優點。循環伏安法電沉積技術亦可用於製造共沉積薄膜,藉由調節掃描電位和速率沉積出不同形貌、厚度的薄膜。功能性藥物遞送系統可以透過共沉積方法與刺激電極整合。刺激電流可以用作外部刺激,並調整通電時間、脈衝間隔以及電流大小控制釋放量。
本研究進行氧化銥電鍍的研究,在不同的pH值下進行電鍍,確認在pH值為10.2的環境下鍍膜較為緻密。再以循環伏安法電鍍出無龜裂且具有良好電荷儲存能力的薄膜,最後再以該實驗條件進行共沉積。本研究用循環伏安法在ITO塗覆的玻璃基底上共沉積氧化銥和血漿蛋白,並調整血漿蛋白質的百分比分別及電鍍時間進行電性及表面形貌比較。最終選取添加5%血漿蛋白及60圈掃描的參數進行藥物釋放以及細胞存活測試。
論文英文摘要:Bioelectronics has attracted considerable attention recently, especially for neural disorder disease. Implantable electrodes have advanced the study of treatments by neurostimulation. An important parameter for the stimulating electrode is its “charge storage capacity” (CSC); a large CSC is desirable for electrode miniaturization and minimizing the occurrence of irreversible reactions. Iridium oxide has recently received considerable attention, due to its metal-like conductivity, iridium oxide has been used for electrical, magnetic, and electrochemical applications
Electrodeposition of iridium oxide has advantages such as being a simple and cost effective fabrication process, being operable at low temperatures, and versatility of substrate shapes. In addition, co-deposition of various materials is feasible by implementing cyclic voltammetry (CV) with electrodeposition.
In this study, we developed a simple cyclic voltammetry approach for the electrodeposition of a hybrid film of plasma proteins/iridium oxide for drug delivery systems. We characterized and evaluated the hybrid electrolytes and deposited films for bio-electrode applications. We also demonstrated the releasing behavior triggered by an electric field. In addition, the biocompatibility of the hybrid films was also checked to test the cell viability.
論文目次:中文摘要.............................................................................................................................i
英文摘要 ..................................................................................................................................ii
誌謝...........................................................................................................................................iv
目錄............................................................................................................................................v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 文獻回顧 3
2.1 氧化銥 3
2.1.1 性質介紹 3
2.1.2 製程比較 4
2.2 電鍍方法 6
2.2.1 直流電鍍 6
2.2.2 脈衝電鍍 7
2.2.3 循環伏安法 8
2.3 神經刺激電極 9
2.3.1 非法拉第電極 10
2.3.2 法拉第電極 11
2.4 血漿蛋白 12
2.5 藥物釋放 14
2.5.1 植入式藥物釋放 14
2.5.2 釋放機制 15
2.5.3 脈衝式藥物釋放系統 17
2.5.4 其他影響藥物釋放的因素 19
第三章 實驗步驟與方法 20
3.1 實驗流程 20
3.1.1 實驗步驟 20
3.1.2 實驗流程圖 20
3.2 電鍍液配製 22
3.2.1 氧化銥電鍍液 22
3.2.2 氧化銥與血漿蛋白共沉積鍍液 23
3.3 電鍍方法 24
3.3.1 直流電鍍法 24
3.3.2 循環伏安電鍍法 25
3.4 量測與分析 26
3.4.1 場發射電子顯微鏡 26
3.4.2 循環伏安法 27
3.4.3 交流阻抗 28
3.4.4 傅立葉轉換紅外線光譜儀 30
3.4.5 電刺激釋放 31
3.4.6 酵素連結免疫分析法 33
3.4.7 細胞毒性測試 35
第四章 結果與討論 36
4.1 不同pH值下鍍氧化銥 36
4.2 不同電鍍方法 40
4.2.1 直流電鍍 40
4.2.2 循環伏安法電鍍 42
4.3 氧化銥與血漿蛋白共沉積 46
4.3.1 改變血漿蛋白液添加量 46
4.3.2 改變掃描圈數 50
4.4 鍍液性質分析 54
4.4.1 鍍液前後阻抗分析 54
4.4.2 鍍液前後分析 56
4.5 應用於藥物釋放 58
4.5.1 浸泡釋放 58
4.5.2 循環伏安釋放 59
4.5.3 脈衝釋放 60
4.5.4 脈衝開關釋放 61
4.6 細胞毒性測試 63
第五章 結論 64
第六章 參考文獻 65
論文參考文獻:1. Greenemeier, L., FDA approves first retinal implant. Nature, 2013. 15: p. 26-28.
2. Jackson, A., et al., Neural interfaces for the brain and spinal cord—restoring motor function. Nature Reviews Neurology, 2012. 8(12): p. 690.
3. Merrill, D.R., et al., Electrical stimulation of excitable tissue: design of efficacious and safe protocols. Journal of Neuroscience Methods, 2005. 141(2): p. 171-198.
4. Elzoghby, A.O., et al., Albumin-based nanoparticles as potential controlled release drug delivery systems. Journal of Controlled Release, 2012. 157(2): p. 168-182.
5. Ketabchi, A., et al., Nanoporous Titanium Surfaces for Sustained Elution of Proteins and Antibiotics. PLOS ONE, 2014. 9(3): p. e92080.
6. Thanawala, S., et al., A neural cell culture study on thin film electrode materials. Journal of Materials Science: Materials in Medicine, 2007. 18(9): p. 1745-1752.
7. Hackwood, S., et al., Amorphous-nonmetal—to—crystalline-metal transition in electrochromic iridium oxide films. Physical Review B, 1982. 26(2): p. 471.
8. Chen, P.-C., et al., Free-standing iridium oxide nanotube array for neural interface electrode applications. Materials Letters, 2018. 221: p. 293-295.
9. Kakooei, S., et al., Electrochemical study of iridium oxide coating on stainless steel substrate. Int. J. Electrochem. Sci, 2013. 8(3): p. 3290-3301.
10. Haynes, W.M., CRC handbook of chemistry and physics. 2014: CRC press.
11. Meyer, R.D., et al., Electrodeposited iridium oxide for neural stimulation and recording electrodes. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2001. 9(1): p. 2-11.
12. Wessling, B., et al., Reactively sputtered iridium oxide influence of plasma excitation and substrate temperature on morphology, composition, and electrochemical characteristics. Journal of the Electrochemical Society, 2007. 154(5): p. F83-F89.
13. Yamanaka, K., Anodically electrodeposited iridium oxide films (AEIROF) from alkaline solutions for electrochromic display devices. Japanese journal of applied physics, 1989. 28(4R): p. 632.
14. Robblee, L.S., et al., Charge injection properties of thermally-prepared iridium oxide films. MRS Online Proceedings Library Archive, 1985. 55.
15. Cruz, A., et al., Iridium oxohydroxide, a significant member in the family of iridium oxides. Stoichiometry, characterization, and implications in bioelectrodes. The Journal of Physical Chemistry C, 2012. 116(8): p. 5155-5168.
16. Tso, K.-C., et al. Chemical Bath Deposition of Iridium Oxide Film for Implantable Neurostimulation Electrode Applications. in Meeting Abstracts. 2016. The Electrochemical Society.
17. Chen, Y.-M., et al., A cost-effective fabrication of iridium oxide films as biocompatible electrostimulation electrodes for neural interface applications. Journal of Alloys and Compounds, 2017. 692: p. 339-345.
18. Noda, T., et al., Performance improvement and functionalization of an electrode array for retinal prosthesis by iridium oxide coating and introduction of smart-wiring technology using CMOS microchips. Sensors and Actuators A: Physical, 2014. 211: p. 27-37.
19. Hodes, G., Chemical solution deposition of semiconductor films. Vol. 191. 2003: Marcel Dekker New York.
20. Radisic, A., et al., Influence of additives on nucleation and growth of copper on n-Si (111) from acidic sulfate solutions. Journal of the Electrochemical Society, 2002. 149(2): p. C94-C99.
21. Marashi-Najafi, F., et al., Biocompatibility of hydroxyapatite coatings deposited by pulse electrodeposition technique on the Nitinol superelastic alloy. Materials Science and Engineering: C, 2017. 76: p. 278-286.
22. Arunachalam, R., et al., Development of nano-spherical RuO2 active material on AISI 317 steel substrate via pulse electrodeposition for supercapacitors. Surface and Coatings Technology, 2015. 276: p. 336-340.
23. Kakooei, S., et al. Electrodeposition of Iridium Oxide by Cyclic Voltammetry: Application of Response Surface Methodology. in MATEC Web of Conferences. 2014. EDP Sciences.
24. Zen, J.-M., et al., Voltammetric behavior and trace determination of Pb2+ at a mercury-free screen-printed silver electrode. Analytica Chimica Acta, 2002. 464(2): p. 229-235.
25. Rose, T., et al., Electrical stimulation with Pt electrodes. VIII. Electrochemically safe charge injection limits with 0.2 ms pulses (neuronal application). IEEE Transactions on Biomedical Engineering, 1990. 37(11): p. 1118-1120.
26. Beebe, X., et al., Charge injection limits of activated iridium oxide electrodes with 0.2 ms pulses in bicarbonate buffered saline (neurological stimulation application). IEEE transactions on biomedical engineering, 1988. 35(6): p. 494-495.
27. Cogan, S.F., et al. Sputtered iridium oxide films (SIROFs) for low-impedance neural stimulation and recording electrodes. in Engineering in Medicine and Biology Society, 2004. IEMBS04. 26th Annual International Conference of the IEEE. 2004. IEEE.
28. Schmidt, E., et al., Intracortical capacitor electrodes: preliminary evaluation. Journal of neuroscience methods, 1982. 5(1-2): p. 33-39.
29. Weiland, J.D., et al., In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes. IEEE transactions on biomedical engineering, 2002. 49(12): p. 1574-1579.
30. Cogan, S.F., Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng., 2008. 10: p. 275-309.
31. Cogan, S.F., et al., Potential-biased, asymmetric waveforms for charge-injection with activated iridium oxide (AIROF) neural stimulation electrodes. IEEE Transactions on Biomedical Engineering, 2006. 53(2): p. 327-332.
32. Vinay, P., et al., Recent Advancement and Technological Aspects of Pulsatile Drug Delivery System - A Laconic Review. Current Drug Targets, 2017. 18(10): p. 1191-1203.
33. Moghimi, S.M., et al., Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Progress in Lipid Research, 2003. 42(6): p. 463-478.
34. Walczyk, D., et al., What the Cell “Sees” in Bionanoscience. Journal of the American Chemical Society, 2010. 132(16): p. 5761-5768.
35. Peng, L., et al., Long-Term Small Molecule and Protein Elution from TiO2 Nanotubes. Nano Letters, 2009. 9(5): p. 1932-1936.
36. Eichner, R., et al., Classification of epidermal keratins according to their immunoreactivity, isoelectric point, and mode of expression. The Journal of Cell Biology, 1984. 98(4): p. 1388.
37. Deng, Z.J., et al., Differential plasma protein binding to metal oxide nanoparticles. Nanotechnology, 2009. 20(45): p. 455101.
38. Weaver, C.L., et al., Electrically Controlled Drug Delivery from Graphene Oxide Nanocomposite Films. ACS Nano, 2014. 8(2): p. 1834-1843.
39. Liu, K.-H., et al., Drug release behavior of chitosan–montmorillonite nanocomposite hydrogels following electrostimulation. Acta Biomaterialia, 2008. 4(4): p. 1038-1045.
40. Gupta, P., et al., Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discovery Today, 2002. 7(10): p. 569-579.
41. Suzuki, Y., et al., A new drug delivery system with controlled release of antibiotic only in the presence of infection. Journal of Biomedical Materials Research, 1998. 42(1): p. 112-116.
42. Asmatulu, R., et al., Drug-Carrying Magnetic Nanocomposite Particles for Potential Drug Delivery Systems. Journal of Nanotechnology, 2009. 2009: p. 6.
43. Fredenberg, S., et al., The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems—A review. International Journal of Pharmaceutics, 2011. 415(1): p. 34-52.
44. Parmar, R.D., et al., Pulsatile drug delivery systems: an overview. Int J Pharm Sci Nanotechnol, 2009. 2: p. 605-614.
45. Bussemer, T., et al., Pulsatile drug-delivery systems. Critical Reviews™ in Therapeutic Drug Carrier Systems, 2001. 18(5).
46. Singh, D., et al., Pulsatile drug delivery system: An overview. International Journal of Current Pharmaceutical Review and Research, 2011. 2(2): p. 55-80.
47. Wang, G., et al., A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews, 2012. 41(2): p. 797-828.
48. Ribeiro, D., et al., Use of Electrochemical Impedance Spectroscopy (EIS) to monitoring the corrosion of reinforced concrete. Revista IBRACON de Estruturas e Materiais, 2015. 8(4): p. 529-546.
49. Kong, J., et al., Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta biochimica et biophysica Sinica, 2007. 39(8): p. 549-559.
50. Bozkurt, O., et al., Diabetes induces compositional, structural and functional alterations on rat skeletal soleus muscle revealed by FTIR spectroscopy: a comparative study with EDL muscle. Analyst, 2010. 135(12): p. 3110-3119.
51. Yang, G.-M., Drug release behavior and preparation of microspheres composed of hydrophilic/hydrophobic blends of ethylcellulose and hydroxypropylcellulose.
52. Hornbeck, P.V., Enzyme‐linked immunosorbent assays. Current protocols in immunology, 2015. 110(1): p. 2.1. 1-2.1. 23.
53. Engvall, E., et al., Enzyme-linked immunosorbent assay, ELISA: III. Quantitation of specific antibodies by enzyme-labeled anti-immunoglobulin in antigen-coated tubes. The Journal of Immunology, 1972. 109(1): p. 129-135.
54. Forster, J., et al., Characterization of differentiated SH-SY5Y as neuronal screening model reveals increased oxidative vulnerability. Journal of biomolecular screening, 2016. 21(5): p. 496-509.
55. Xicoy, H., et al., The SH-SY5Y cell line in Parkinson’s disease research: a systematic review. Molecular neurodegeneration, 2017. 12(1): p. 10.
56. Hashim, D., et al., Potential use of Fourier transform infrared spectroscopy for differentiation of bovine and porcine gelatins. Food chemistry, 2010. 118(3): p. 856-860.
論文全文使用權限:同意授權於2018-08-08起公開