You are here:Home > Theses > Detail
Title:導電銅漿的製備與應用 [以論文名稱查詢館藏系統]
Translated Title:Preparation and application of conductive copper paste [以論文名稱查詢館藏系統]
School:臺北科技大學
College:工程學院
Department:分子科學與工程系有機高分子碩士班
Year:106
Semester:第二學期
Publish Year:107
Creator:周暐皓
Translated Creator:Wei-Hao Chou
Student ID:105518015
Degree:碩士
Language:中文
Defense Date:2018/07/18
Pages:85
Advisor:程耀毅
Translated Advisor:Y.-Y. Cheng
Committee:程耀毅
Translated Committee:Y.-Y. Cheng
Keyword:導電銅漿料銅顆粒黏著劑聚乙烯吡咯烷酮奈米銀包銅線奈米銀包銅薄片光固化聚氨酯
Trandlated Keyword:Copper pastecopper particlesadhesive agentpolyvinylpyrrolidonesilver coated copper nanowiressilver coated copper nanoflakesphotocurable polyurethane
Abstract:本研究第一部分成功製備出以250°C進行低溫燒結的導電銅漿料,且將其漿料應用於太陽能晶片上的匯流線與金手指部分。我們嘗試以0.06, 0.1, 0.5, 1, 3, 5μm的銅顆粒粉體作為導電填充物,與黏著劑Araldite○R 506或BFE 170進行銅漿配製,探討其漿料在玻璃與氮化矽基板上進行低溫燒結後銅膜的黏著性與導電性。經由實驗結果顯示,Araldite○R 506所製備的銅薄膜相較於BFE 170的銅薄膜具有良好黏著性質,因此Araldite○R 506被選為配製銅漿最好的黏著劑。結果發現經由酸洗過後且包覆一層聚乙烯吡咯烷酮高分子的銅顆粒所配製出的導電漿料,具有良好的導電性 (9.3×10-5Ωcm)且通過5B百格標準測試。
本研究第二部分成功製備出良好分散性的奈米銀包銅線與銅薄片作為導電填充物,且以奈米銀包銅薄片與光固化聚氨酯高分子進行結合所製備出的導電複合薄膜,探討其薄膜經過拉伸率達50%時拉伸與回復後的電阻值。經由實驗結果顯示,奈米銀包銅粉體相較於經聚乙烯吡咯烷酮進行表面改質後奈米銅粉體,具有良好的抗氧化與導電性。
Translated Abstract:In the first part of this study, an electrically conductive copper paste sintered at a low temperature of 250°C was successfully prepared, and its paste was applied to the busbar and finger portion of the solar wafer. Conductive copper particles of particle sizes of 0.06, 0.1, 0.5, 1, 3, or 5μm were used to prepare the copper paste using adhesive agent, Araldite○R 506 or BFE 170. The adhesion and conductivity of the copper film obtained from the copper paste heat-treated on glass or silicon nitride substrate were investigated. These results exhibited that copper film prepared from copper paste using Araldite○R 506 as the adhesive agent had better adhesion with the substrate than using BFE 170. Therefore, Araldite○R 506 was chosen as the adhesive agent of the copper paste. As a result, it was found that the conductive paste prepared using copper particles treated with lactic acid and then capped with polyvinylpyrrolidone has good conductivity (9.3×10-5 Ωcm) and passed the 5B standard adhesion test.
In the second part of this study, we successfully prepared well-dispersed silver coated copper nanowires and copper nanoflakes as a conductive filler. A conductive composite film was prepared by combining the silver coated copper nanoflakes and a photocurable polyurethane. The resistance of this thin film was investigated after stretched and then recovered with the drawing ratio reaches up to 50%. The experimental results show that silver coated copper nanoflakes have better oxidation resistance and electrical conductivity than copper nanoflakes modified by polyvinylpyrrolidone.
Table of Content:中文摘要…………………………………………………………….……........……i
英文摘要…………………………………………………………….…….….……..ii
致謝……………………………………………………………………………….…iii
目錄………………………………………………………………………………….iv
表目錄…………………………………………………………………….…………vii
圖目錄………………………………………………………………………….…ix
第一章 緒論……………………………………………………………………….1
1.1 前言…………………………………………………………………..1
1.2 研究動機……………………………………………………………..3
第二章 文獻回顧…………………………………………….……………………4
2.1 導電銅粉簡介………………………………...………………………..4
2.1.1 市售銅顆粒簡介………………………………………………..4
2.1.2 奈米銅線簡介…………..………………………………………5
2.1.3 奈米銅薄片簡介……………………………………………..…6
2.1.4 表面酸洗處理…………………………………………………..7
2.1.5 聚乙烯吡咯烷酮進行銅表面改質………………………..……8
2.1.6 鍍銀過程進行表面改質……………………………………..11
2.2 黏著劑的簡介………………………………………………………11
2.3 環氧樹脂與固化劑簡介……………………………….……………..14
2.3.1 環氧樹脂的分類…………………………………………...….14
2.3.2 固化劑的分類與選用………….………………………..…….17
2.3.3 環氧樹脂與固化劑的反應機制………………………………21
2.3.4 導電銅/環氧樹脂薄膜配方計算………………………….….23
2.4 光固化聚氨酯簡介…………………………………...……………..26
2.4.1 聚氨酯的原料簡介……………………………………………26
2.4.2 聚氨酯的反應機制…………………………………………...28
2.4.3 聚氨酯的合成方法…………………………………………...29
2.4.4 光固化聚氨酯的固化機制……………………………..…….30
2.4.5 光固化聚氨酯的分類…………………………………………30
2.4.6 影響光固化聚氨酯的因素…………………………………...31
2.4.7 奈米銀包酮薄片/光固化聚氨酯薄膜配方計算…………..….32
第三章 實驗………………………………………………………………………35
3.1 實驗材料與儀器……………………………………………………..35
3.1.1 製備奈米銅線的材料與儀器………….……………………...35
3.1.2 製備奈米銅薄片的材料與儀器………………………………35
3.1.3 製備奈米銀包銅線與薄片的材料與儀器…….…………..….36
3.1.4 製備光固化聚氨酯的材料與儀器……………………….…...36
3.1.5 製備導電銅/環氧樹脂薄膜的材料與儀器……………...……36
3.1.6 製備奈米銀包銅薄片/光固化聚氨酯薄膜的材料與器材…...37
3.2 實驗流程………….……………………………………………..……37
3.2.1 奈米銅線製備流程…………………………………...……….37
3.2.2 奈米銅薄片製備流程……………….……………….………..39
3.2.3 奈米銀包銅線與薄片製備流程…………..………………......40
3.2.4 光固化聚氨酯製備流程……………………………………....41
3.2.5 導電銅/環氧樹脂薄膜製備流程……………………...………43
3.2.6 可拉伸式奈米銀包銅薄片/光固化聚氨酯薄膜製備流程…45
第四章 結果與討論………………………………………………………………46
4.1 導電銅/環氧樹酯薄膜…………..……………………………………46
4.1.1 導電銅顆粒的抗氧化曲線圖…………………………………46
4.1.2 環氧樹脂/固化劑薄膜的FT-IR圖…………………………....47
4.1.3 環氧樹脂/固化劑薄膜的TGA圖……………………………..49
4.1.4 複合薄膜電阻率與黏著測試的數據………………………....50
4.2 奈米銀包銅薄片/光固化聚氨酯薄膜………………..………………65
4.2.1 奈米銅線和奈米銀包銅線的SEM與EDS圖………….…….65
4.2.2 奈米銅線和奈米銀包銅線的XRD圖……………….….…….67
4.2.3 奈米銅線和奈米銀包銅線的抗氧化比較圖…………...…….68
4.2.4 奈米銅薄片和奈米銀包銅薄片的SEM與EDS圖……..……69
4.2.5 奈米銅薄片和奈米銀包銅薄片的XRD圖……………….….71
4.2.6 奈米銅薄片和奈米銀包銅薄片的抗氧化比較圖……………72
4.2.7 光固化聚氨酯的FT-IR圖……………………………………73
4.2.8 光固化聚氨酯的TGA圖………………………………….….74
4.2.9 光固化聚氨酯的應力-應變圖………………………………...75
4.2.10 可拉伸式奈米銀包銅薄片薄膜的拉伸測試數據…………..76
第五章 結論………………………………………………………………………80
第六章 未來方向………………………………………………………………….81
參考文獻………………………………………………………………………...….82
Reference:[1] Y. Won, A. Kim, D. Lee, W. Yang, K. Woo, S. Jeong and J. Moon, Annealing-free fabrication of highly oxidation-resistance copper nanowire composite conductors for photovoltaics, NPG Asia Materials, 6, e105 , 2014, pp. 1-9.
[2] H.-J. Hwang, W.-H. Chung and H.-S. Kim, In situ monitoring of flash-light sintering of copper nanoparticle ink for printed electronics, Nanotechnology, 23, 48, 2012, pp. 1-9.
[3] A. Umer, S. Naveed, N. Ramzan, M.-S. Rafique, M. Imran, A green method for the synthesis of copper nanoparticles using L-ascorbic acid, Revista Materia, 19, 3, 2014, pp. 197-203.
[4] Q.-M. Liu, T. Yasunami, K. Kuruda, M. Okido, Preparation of Cu nanoparticles with ascorbic acid by aqueous solution reduction method, Trans. Nonferrous Met. Soc. China, 22, 2012, pp. 2198-2203.
[5] R. Dang, L. Song, W. Dong, C. Li, X. Zhang, G. Wang and X. Chen, Synthesis and self-assembly of large-area Cu nanosheets and their application as an aqueous as an aqueous conductive ink on flexible electronics, ACS Appl. Mater. Interface, 6, 2014, pp. 622-629.
[6] S. Xu, X. Sun, H. Ye, T. You, X. Song, S. Sun, Selective synthesis of copper nanoplates and nanowires via a surfactant-assisted hydrothermal process, Materials Chemistry and Physics, 120, 2010, pp. 1-5.
[7] M. Kevin, G.-Y.-R. Lim and G.-W. Ho, Facile control of copper nanowire dimensions via the Maillard reaction: using food chemistry for fabricating large-scale transparent flexible conductors, Green Chem., 17, 2015, pp. 1120-1126.
[8] S. Li, Y. Chen, L. Huang and D. Pan, Large-scale synthesis of well-dispersed copper nanowires in an electric pressure cooker and their application in transparent and conductive networks, Inorg. Chem., 53, 9, 2014, pp. 4440-4444.
[9] N. Fan, L. Xu, J. Li, X. Ma and Y. Qian, Selective synthesis of plate-like and shrub-like micro-scale copper crystallites, Journal of Crystal Growth, 299, 2007, pp. 212-217.
[10] S.-P. Wu a, R.-Y. Gao and L.-H. Xu, Preparation of micron-sized flake copper powder for base-metal-electrode multi-layer ceramic capacitor, Journal of Materials Processing Technology, 209, 2009, pp.1129-1133.
[11] S. Wu, H. Qin and P. Li, Preparation of fine copper powders and their application in BME-MLCC, Journal of University of Science and Technology Beijing, 13, 3, 2006, pp. 250-255.
[12] A.-R. Sadrolhosseini, S.-A. Rashid, A. Zakaria and K. Shameli, Green fabrication of copper nanoparticles dispersed in walnut oil using laser ablation technique, Journal of Nanomaterials, 62, 2016, pp. 1-7.
[13] A.-A. Ponce and K.-J. Klabunde, Chemical and catalytic activity of copper nanoparticles prepared via metal vapor synthesis, Journal of Molecular Catalysis A: Chemical, 225, 2005, pp. 1-6.
[14] S.-J. Joo, S.-H. Park, C.-J. Moon and H.-S. Kim, A highly reliable copper nanowire/nanoparticle ink pattern with high conductivity on flexible substrate prepared via a flash light-sintering technique, ASC Appl. Mater. Interfaces, 7, 10, 2015, pp. 5674-5684.
[15] A.-K Venkata, K.-R.-R Venkata, P.-S. Karthik and S.-P. Singh, Copper conductive inks: synthesis and utilization in flexible electronics, RSC Adv., 5, 2015, pp. 63985-64030.
[16] Y. Cheng, S. Wang, R. Wang, J. Sun and L. Gao, Copper nanowire based transparent conductive films with high stability and superior stretchability, J. Mater. Chem. C, 2, 2014, pp. 5309-5316.
[17] W. Huang, J. Li, S. Zhao, F. Han, G. Zhang, R. Sun and C.-P. Wong, Highly electrically conductive and stretchable copper nanowire-based composite for flexible and printable electronics, Composites Science and Technology, 146, 2017, pp. 169-176.
[18] W.-Y. Ma, Y.-Y. Cheng, J.-K. Chen, K.-H. Chan, Z.-J. Lin, W.-H. Chou and W.-C. Chang, Synthesis of antioxidative conductive copper inks with superior adhesion, Journal of Nanoscience and Nanotechnology, 18, 2018, pp. 318-322.
[19] N. Matsuhisa, M. Kaltenbrunner, T. Yokota, H. Jinno, K. Kuribara, T. Sekitani and T. Someya, Printable elastic conductors with a high conductivity for electronic textile applications, Nature Communications, 6, 2015, pp. 7461-7472.
[20] S. Ding, J. Jiu, Y. Gao, Y. Tian, T. Araki, T. Sugahara, S. Nagao, M. Nogi, H. Koga, K. Suganuma and H. Uchida, One-step fabrication of stretchable copper nanowire conductors by a fast photonic sintering technique and its application in wearable devices, ACS Appl. Mater. Interfaces, 8, 9, 2016, pp. 6190-6199.
[21] W. Hu, R. Wang, Y. Luc and Q. Pei, An elastomeric transparent composite electrode based on copper nanowires and polyurethane, J. Mater. Chem.C., 2, 2014, pp.1298-1305.
[22] G.-A. Gelves, B. Lin, U. Sundararaj and J.-A. Haber, Low electrical percolation threshold of silver and copper nanowires in polystyrene composites, Adv. Funct. Mater., 16, 2006, pp.2423-2430.
[23] D. Wood, K.-F. Izabela, R. Russell, F. Duerinckx, N. Powell, A. Zambova, B. Chislea, P. Chevalier, C. Boulord, A. Beucher, N. Zeghers, W.-W. Deng, Z. Feng, P. Verlinden, J. Szlufcik, G. Beaucarne, Passivated busbars from screen-printed low-temperature copper paste, Energy Procedia, 55, 2014, pp.724-732.
[24] S.-H. Lee, D.-W. Lee and S.-H. Lee, Review of conductive copper paste for c-Si solar cells, Korean J. Met. Mater., 55, 9, 2017, pp. 637-644.
[25] P. Paneka, R.-P. Sochab, G. Putynkowskic and A. Slaoui, The new copper composite of pastes for Si solar cells front electrode application, Energy Procedia, 92, 2016, pp. 962-970.
[26] J. Virtanen, J. Virkki, L. Ukkonen and L. Sydänheimo, Inkjet-printed UHF RFID tags on renewable materials, Advances in Internet of Things, 2, 2012, pp. 79-85.
[27] Y. Lee, J.-R. Choi, K.-J. Lee, N.-E. Stott and D. Kim, Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics, Nanotechnology, 19, 2008, pp. 415604-415611.
[28] F. Qian, P.-C. Lan, T. Olson, C. Zhu, E.-B.Duoss, C.-M. Spadaccini and T.-Y.-J. Han, Multiphase separation of copper nanowires, Chem. Commun., 52, 2016, pp. 11627-11630.
[29] H.-J. Hwang, K.-H. Oh and H.-S. Kim, All-photonic drying and sintering process via flash white light combined with deep-UV and near-infrared irradiation for highly conductive copper nano-ink, Scientific Reports, 6, 2016, pp. 19696-19706.
[30] Y. Li, Y. Huo, C. Li, S. Xing, L. Liu and G. Zou, Thermal analysis of Cu-organic composite nanoparticles and fabrication of highly conductive copper films, Journal of Alloys and Compounds, 649, 2015, pp. 1156-1163.
[31] X. He, R. He, Q. Lan, F. Duan, J. Xiao, M. Song, M. Zhang, Y. Chen and Y. Li, A facile fabrication of silver-coated copper nanowires by galvanic replacement, Journal of Nanomaterials, 2016, pp. 1-8.
[32] 程時遠,李盛彪,黃世強,膠黏劑第二版,北京,化學工業出版社,2008,pp. 1-71.

[33] 李盛彪,黃世強,王石全,膠黏劑選用與黏接技術,北京,化學工業出版社,2002,pp. 1-47
[34] 陳平,王德中,環氧樹脂及其應用,北京,化學工業出版社,1994,pp. 1-97.
[35] 胡玉明,吳良義,固化劑,北京,化學工業出版社,2004,pp. 1-213.
[36] 陳佳琨,導電銅墨水於基板附著力性質之研究,碩士,台北科技大學高分所,台北市忠孝東路三段一號,105.
[37] 張弘銘,甲基丙烯酸羥乙酯含量對紫外光固化聚氨基甲酸酯之性質研究,碩士,台北科技大學高分所,台北市忠孝東路三段一號,105.
[38] 何俊龍,多元醇對紫外光固化聚氨基甲酸酯之性質研究,碩士,台北科技大學高分所,台北市忠孝東路三段一號,106.
Paper Authorization:ApprovelAt2023-07-19Open