現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:鋼索支撐結構之施工階段最佳化分析與鋼索索力評估 [以論文名稱查詢館藏系統]
論文英文名稱:Optimized Construction Stage and Cable Force Evaluation of Cable Supported Structure [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木工程系土木與防災碩士班
畢業學年度:106
畢業學期:第一學期
出版年度:107
中文姓名:趙國宏
英文姓名:Kou-Hung Chao
研究生學號:105428001
學位類別:碩士
語文別:中文
口試日期:2018/01/24
論文頁數:189
指導教授中文名:宋裕祺
口試委員中文名:尹世洵;陳松堂
中文關鍵詞:施工階段反應曲面法遺傳演算法鋼索索力評估
英文關鍵詞:Construction Stage AnalysisResponse Surface MethodsGenetic AlgorithmCable Force Evaluation
論文中文摘要:本文第一部分為一脊背橋之施工階段探討。為求精確,橋梁之有限元素模型須具備相當數量之元素,且施工階段設定複雜,導致分析耗時、無法即時反應監測數據以做為結構安全之依據。本文建議以簡易的反應曲面函數取代各個施工階段繁雜的有限元素分析,並利用遺傳演算法將反應曲面函數趨近於有限元素施工階段分析之結果,將上一階段經最佳化後之結果當作下一階段之條件,達到符合實際橋梁每一施工階段之靜態與動態特性為目標的最佳化結構識別。
本文第二部分為接續第一部分最佳化後之結果,探討鋼索支撐結構之鋼索索力評估,利用強迫振動方法解決有限元素模型之鋼索頻率,並更改鋼索索力以求得頻率對應索力之關係式。另外也利用強迫振動法探討台北市劍潭捷運站之鋼索支撐結構,探討劍潭捷運站懸吊系統之背拉索、主索與吊索之索力。本研究成果可供後續鋼索支撐結構之長期鋼索索力評估之用。
論文英文摘要:First section of this paper discusses construction stage of extradosed bridge. Since modeling construction stage analysis require numerous amount of element, which is a very complicated and time consuming procedure; thus doesn’t have immediate respond to the monitoring data as the basis for structural safety. In this paper, a simple response surface function is used to replace the complicated finite element analysis in various construction stages. Then genetic algorithm is used to approximate the response surface function to the finite element analysis model, while each stage of the construction stage includes static and dynamic optimization of the previous construction stage, this way optimization of the whole construction stage is guaranteed.
In the second section of this paper, the optimization result of the first section is discussed, and cable force is evaluated by using forced vibration method and establish force-frequency relation. In addition, forced vibration method is also used to explore the cable supported structure of Taipeis Jiantan MRT station and to explore the cable force of the main cable and the suspended cables of the suspension system of the Jiantan MRT Station. The result of this study can be used for long-term cable force evaluation of subsequent cable support structures.
論文目次:摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 vi
表目錄 xi
圖目錄 xiii
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究方法與內容 2
1.3 論文組織與架構 3
第二章 文獻回顧 6
2.1 前言 6
2.2 遺傳演算法於工程上之應用 6
2.3 橋梁施工階段分析探討與控制 8
2.4 鋼索軸力評估之研究 10
2.5 小結 12
第三章 有限元素分析方法之理論驗證與最佳化識別 14
3.1 前言 14
3.2 簡支梁受移動載重作用之基本理論 14
3.3 強迫振動法應用於有限元素模型分析之驗證 23
3.4 有限元素模型最佳化識別之基本觀念 25
3.4.1 矩陣最佳化識別法 25
3.4.2 設計參數調整法 26
3.5 基於反應曲面法之有限元素模型最佳化識別方法 27
3.5.1 實驗設計 28
3.5.1.1 全因子實驗設計 29
3.5.1.2 中心複合設計 29
3.5.1.3 Box-Behnken Design 30
3.5.2 反應曲面函數型式之選擇 32
3.5.3 反應曲面函數檢驗 33
3.5.4 參數顯著性檢定 34
3.6 小結 36
第四章 遺傳演算法 37
4.1 前言 37
4.2 遺傳演算法概述 37
4.3 遺傳演算法要點說明 41
4.3.1 編碼方式 41
4.3.1.1 二進制編碼 41
4.3.1.2 實數編碼 42
4.3.2 適應度函數 42
4.3.2.1 目標函數與適應度函數 43
4.3.2.2 適應度函數尺寸轉換 43
4.3.3 選擇操作 46
4.3.3.1 比例選擇法 46
4.3.3.2 菁英保留策略 47
4.3.3.3 排序選擇法 47
4.3.3.4 隨機聯賽法 48
4.3.3.5 期望值選擇法 48
4.3.4 交配操作 48
4.3.4.1 單點交配 49
4.3.4.2 雙點與多點交配 49
4.3.4.3 均勻交配 50
4.3.4.4 算數交配 51
4.3.5 突變操作 52
4.3.5.1 簡單突變 52
4.3.5.2 均勻突變 53
4.3.5.3 非均勻突變 53
4.3.5.4 高斯突變 54
4.3.5.5 邊界突變 54
4.4 具限制條件遺傳演算法 55
4.5 遺傳演算法之基本參數設計原則 57
4.6 遺傳演算法GA分析與驗證 58
4.7 小結 66
第五章 橋梁有限元素施工階段分析之模型最佳化 67
5.1 前言 67
5.2 案例分析-橋梁基本介紹 67
5.2.1 橋梁工址與簡介 67
5.2.2 監測儀器安裝位置與說明 69
5.2.2.1 水準尺安裝位置 70
5.2.2.2 施工階段橋面線型量測流程 72
5.2.3 橋梁之施工階段說明 72
5.3 橋梁有限元素分析模型之建立 76
5.3.1 成橋模型建置 76
5.3.2 施工階段模型設置 79
5.4 依據量測變位之遺傳演算法最佳化設計參數 80
5.4.1 以節塊之楊氏係數建立每一施工階段反應曲面函數 81
5.4.1.1 反應曲面函數之建立 81
5.4.1.2 反應曲面函數之選擇與檢驗 83
5.4.1.3 遺傳演算法進行最佳化之結果 85
5.4.1.4 各階段之最佳化分析 86
5.4.2 以鋼腱之預力建立每一施工階段反應曲面函數 88
5.4.2.1 反應曲面函數之建立 88
5.4.2.2 反應曲面函數之選擇與檢驗 90
5.4.2.3 遺傳演算法進行最佳化之結果 92
5.5 現地量測變位數據與有限元素分析比對 92
5.5.1 以節塊之楊氏係數最佳化後之結果分析比對 93
5.5.2 以節塊鋼腱預力最佳化後之結果分析比對 97
5.6 小結 101
第六章 以強迫振動法評估鋼索軸力之應用 102
6.1 前言 102
6.2 基本之鋼索理論介紹 103
6.2.1 以弦理論為依據之鋼索軸力評估 103
6.2.2 以梁-柱理論為依據之鋼索軸力評估 104
6.2.3 Zui 鋼索軸力評估公式 106
6.3 強迫振動法應用於有限元素分析模型 107
6.4 案例分析 112
6.4.1 案例一 劍潭捷運站屋頂懸吊系統 112
6.4.1.1索力計及其相關設備規格 112
6.4.1.2索力計安裝位置 113
6.4.2 案例二 WH10-A西濱脊背橋 114
6.4.2.1索力計及其相關設備規格 114
6.4.2.2 索力計安裝位置 115
6.4.2.3 索力量測流程 115
6.5 現地量測與有限元素分析比對及後續應用 116
6.5.1 案例一 劍潭捷運站屋頂懸吊系統 116
6.5.1.1 現地量測頻率資料 116
6.5.1.2 現地量測與分析比對 118
6.5.1.3 建立頻率對應軸力之關係進行後續應用 120
6.5.2 案例二 WH10-A西濱脊背橋 125
6.5.2.1 現地量測頻率資料與有限元素模型分析比對 125
6.5.2.2 利用完工階段量測之頻率建立頻率與索力之關係 129
6.6 小結 137
第七章 結論與建議 138
7.1 結論 138
7.2 建議 140
參考文獻 141
附錄A 各施工階段分析結果 146
論文參考文獻:[1] J. H. Holland, Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence, Oxford, England: U Michigan Press, 1975, viii, 183.
[2] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley Longman Publishing Co., Inc., 1989, 372.
[3] S. Nagendra, D. Jestin, R. T. Haftka and L. T. Watson, “Improved genetic algorithm for the design of stiffened composite panels,” Journal of Computers and Structures, Vol. 58, No. 3, 1996, pp. 543-555.
[4] H. Wang and H. Ohmori, “Elasto plastic analysis based truss optimization using Genetic Algorithm,” Engineering Structure, Vol. 50, Issue, 2013, pp. 1-12.
[5] D. Ribeiro, R. Calcada, R. Delgado, M. Brehm, and V. Zabel, “Finite element model updating of a bowstring-arch railway bridge based on experimental modal parameters,” Engineering Structures, Vol. 40, Issue, 2012, pp. 413-435.
[6] J. Cheng, “Optimum design of steel truss arch bridges using a hybrid genetic algorithm,” Journal of Constructional Steel Research, Vol. 66, Issues 8–9, 2010, pp. 1011-1017.
[7] M. E. Semelawy, A. O. Nassef, A. A. E. Damatty, “Design of prestressed concrete flat slab using modern heuristic optimization techniques,” Expert Systems with Applications, Vol. 39, Issue 5, 2012, pp. 5758-5766.
[8] P. Nanakorn, M. Konlakarn, “An adaptive penalty function in genetic algorithms for structural design optimization,” Computers and Structures, Vol. 79, Issues 29–30, 2001, pp. 2527-2539.
[9] B. W. Smith, “Developing an erection scheme for a large bridge,” Computer-Aided Design, Vol. 10, Issue 4, 1978, pp. 263-268.
[10] M. K. Tadros, A. Ghali, W. H. Dilger, “Long-Term Stresses and Deformation of Segmental Bridges,” Journal of Prestressed Concrete Institute, Vol. 24, Issue 4, 1979, pp. 66-87.
[11] H. Nakayama, K. Kaneshige, S, Takemoto, Y, Watada, “An application of a multi-objective programming technique to construction accuracy control of cable-stayed bridges”, European Journal of Operational Research, Vol. 87, Issue 3, 1995, pp. 731-738.
[12] P. Reddy, J. Ghaboussi, N. M. Hawkins, “Simulation of Construction of Cable-Stayed Bridges,” Journal of Bridge Engineering, Vol. 4, Issue 4, 1999, pp. 249-257.
[13] H. Furuta, Y. Kawamura, H. Arimura, K. Takase, “Cable Tension Control of Tsuneyoshi Bridge Using Multi-Objective Genetic Algorithm,” Advanced Technology in Structural Engineering, Structures Congress 2000, Philadelphia, Pennsylvania, United States, 2000, pp. 1-8.
[14] H. G. Kwak, J. K. Son, “Determination of design moments in bridges constructed by balanced cantilever method,” Engineering Structures, Vol. 24, Issue 5, 2002, pp. 639-648.
[15] R. Malm, H. Sundquist, “Time-dependent analyses of segmentally constructed balanced cantilever bridges,” Engineering Structures, Vol. 32, Issue 4, 2010, pp. 1038-1045.
[16] S. Ates, “Numerical modelling of continuous concrete box girder bridges considering construction stages,” Applied Mathematical Modelling, Vol. 35, Issue 8, 2011, pp. 3809-3820.
[17] B. Atmaca, S. Ates, “Construction stage analysis of three-dimensional cable-stayed bridges,” Steel and Composite Structures, Vol. 12, Issue 5, 2012, pp. 413-426.


[18] S. J. Sun, Ji. Gao, P. M. Huang, “Forward-Calculating Optimization Method for Determining the Rational Construction State of Cable-Stayed Bridges,” Advanced Materials Research, Vol. 671-674, 2013, pp. 980-984.
[19] Z. Fang, J. Wang, “Practical Formula for Cable Tension Estimation by Vibration Method,” Journal of Bridge Engineering, Vol. 17, Issue 1, 2010, pp. 161-164.
[20] S. W. Kim, N. S. Kim, “Dynamic characteristics of suspension bridge hanger cables using digital image processing,” NDT & E lnternational, Vol. 59, Issue, 2013, pp. 25-33.
[21] C. C. Chen, W. H. Wu, H. Z. Tseng, C. H. Chen, G. Lai, “Application of digital photogrammetry techniques in identifying the mode shape ratios of stay cables with multiple camcorders,” Measurement, Vol. 75, Issue, 2015, pp. 134-146.
[22] K. S. Park, T. R. Seong, M. H. Noh, “Feasibility Study on Tension Estimation Technique for Hanger Cables Using the FE Model-Based System Identification Method,” Mathematical Problems in Engineering, Vol. 2015, Issue, 2015, pp. 12.
[23] H. Zui, T. Shinke, Y. Namita, “Practical Formulas for Estimation of Cable Tension by Vibration Method,” Journal of Structural Engineering, Vol. 122, Issue 6, 1996, pp. 651-656.
[24] B. H. Kim, T. Park, “Estimation of cable tension force using the frequency-based system identification method,” Journal of Sound and Vibration, Vol. 304, Issue 3–5, 2007, pp. 660-676.
[25] B. H. Kim, T. Park, H. Shin, T. Y. Yoon, “A Comparative Study of the Tension Estimation Methods for Cable Supported Bridges,” Steel Structures, Vol. 7, Issue 1, 2007, pp. 77-84.
[26] C. Vallabhan, “Two-Dimensional Nonlinear Analysis of Long Cables,” Journal of Engineering Mechanics, Vol. 134, Issue 8, 2008, pp. 694-697.


[27] M. G. Yang, Z. Q. Chen, X. G. Hua, “A new two-node catenary cable element for the geometrically non-linear analysis of cable-supported structures,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 224, Issue 6, 2010, pp. 1173-1183.
[28] H. Nam, N. T. Nghia, “Estimation of Cable Tension Using Measured Natural Frequencies,” Procedia Engineering, Vol. 14, Issue, 2011, pp. 1510-1517.
[29] M. A. Ceballos , C. A. Prato, “Determination of the axial force on stay cables accounting for their bending stiffness and rotational end restraints by free vibration tests,” Journal of Sound and Vibration, Vol. 317, Issue 1–2, 2008, pp. 127-141.
[30] J. Wei, G. Li, M. Razavi, “Theoretical Study on Cable Tension Detection Considering Support Vibration,” Transportation and Development Innovative Best Practices 2008, 2008, pp. 450-455; American Society of Civil Engineers.
[31] C. C. Chen, W. H. Wu, C. H. Chen, G. Lai, “Determination of stay cable force based on effective vibration length accurately estimated from multiple measurements,” Smart Structures and Systems, Vol. 11, Issue 4, 2013, pp. 411-433.
[32] 張國鎮、周智傑, “集鹿斜張橋委託監測工作”, NCREE-04-021, 2004.
[33] 李政寬、陳建州、周智傑、張國鎮,「斜張鋼纜微振訊號有限元素法解析」,中國土木水利工程學刊,第十八卷,第二期,2006,第279-288頁。
[34] A. Berman, W. G. Flannelly, “Theory of Incomplete Models of Dynamic Structures”, AIAA Journal, Vol. 9, Issue 8, 1971, pp. 1481-1487.
[35] G. E. P. Box, K. B. Wilson, “On the Experimental Attainment of Optimum Conditions”, Journal of the Royal Statistical Society. Series B (Methodological), Vol. 13, Issue 1, 1951, pp. 1-45.
[36] D. C. Montgomery, Design and Analysis of Experiments, John Wiley and Sons, 2006.
[37] 宗周紅、任伟新,橋梁有限元素模型修正和模型確認,北京:人民交通出版社,2012。
[38] G. E. P. Box, D. W. Behnken, “Some New Three Level Designs for the Study of Quantitative Variables,” Technometrics, Vol. 2, Issue 4, 1960, pp. 455-475.
[39] 馬秀蘭、吳德邦,統計學-以Microsoft Excel為例,新北市:新文京,2011。
[40] J. H. Holland, Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence, Oxford, England: U Michigan Press, 1975, viii, 183.
[41] 謝政、李建平、湯澤瀅,非線性最優化,長沙:國防科技大學出版社,2003。
[42] 陳國良、王煦法、庄鎮泉、王東生,遺傳演算法及其應用,北京:人民郵電出版社,1996。
[43] 周明、孫樹棟,遺傳演算法原理及應用,北京:國防工業出版社,1999。
[44] 蘇進國,模糊遺傳演算法在橋梁耐震性能設計之應用與耐震維修補強生命週期成本最小化之研究,博士 論文,國立台北科技大學工程科技研究所,台北,2008。
[45] 梁醒培、王輝,基於有限元素法的結構優化設計-原理與工程應用,北京:清華大學出版社,2010。
論文全文使用權限:同意授權於2023-01-30起公開