現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:應用SWAT評估𩻸魚堀溪集水區水傳播微生物之適宜性研究 [以論文名稱查詢館藏系統]
論文英文名稱:The effectiveness of SWAT for assessing water-borne pathogen loadings in Daiyujyue stream watershed [以論文名稱查詢館藏系統]
院校名稱:國立臺北科技大學
學院名稱:工程學院
系所名稱:土木工程系土木與防災碩士班
畢業學年度:105
畢業學期:第二學期
出版年度:106
中文姓名:趙柏翰
英文姓名:Po-Han Chao
研究生學號:102428074
學位類別:碩士
語文別:中文
口試日期:2017/07/25
論文頁數:115
指導教授中文名:朱子偉
口試委員中文名:朱子偉;陳世楷;譚智宏;張志新
中文關鍵詞:非點源污染SWAT模式水質營養鹽水傳播微生物
英文關鍵詞:nonpoint source pollutionSWAT modelwater qualitynutrientwaterborne pathogen
論文中文摘要:致病微生物與過量營養鹽問題一樣,可透過點源與非點源污染進入水體,造成飲用水源的污染。然而,由於複雜的傳輸機制與生命週期變化,來自於非點源的病原體比起點源更加難以控制。因水傳播病原體污染的特性相當複雜,導致集水區病原體污染物承載推估與污染源之標定相當困難。長期連續的水質監測不僅花費大量人力和物力,對大規模的集水區而言,空間多樣性的變化也增加全面監測實施的困難。故透過集水區數理模式來分析在不同氣候、地文及管理情況下集水區水微生物病原體污染負荷與空間分佈,可以輔助監測資料之不足並分析有效的管理做為。
本研究目的在驗證並評估SWAT(Soil and Water Assessment Tool)模式模擬𩻸魚堀溪集水區水傳播微生物之適用性。SWAT模式為集水區尺度、連續時間模擬、具空間分佈變數的水文及水質模式。研究收集1995至2014年氣象、地文及水文和水質等資料進行模擬,以位於𩻸魚堀溪集水區出口大林橋站的流量、泥沙量和營養鹽及大腸桿菌群觀測資料進行模式的檢定(1997至2006年)和驗證(2006至2014年)。檢定和驗證結果顯示,月模擬水文及泥沙的檢定驗證結果效率係數均可大於0.75,顯示模式對水文及泥沙模擬能力相當良好。營養鹽模擬部分,氨氮和總氮之月模擬效率係數也都可達到0.7以上而溶解性磷、總磷月模擬效率係數稍低亦可達到0.4以上。最後SWAT模式在大腸桿菌群模擬表現,年模擬效率係數可以達到0.72且相對誤差小於2%,顯示在長期的管理上,SWAT模式對大腸桿菌群負荷的評估相當合理。綜合所有模擬結果顯示SWAT模式具有模擬混合土地使用集水區長期水文暨水質反應的能力,並且可以應用於標定病原體污染關鍵區域,作為日後設置適當的最佳管理作業(Best Management Practices, BMPs)的參考,並進一步研擬總最大日負荷(Total Maximum Daily Load, TMDL)規劃,提供集水區管理單位有益之規劃資訊。
論文英文摘要:Similar to water pollution from nutrient excess, water pollution from microbial pathogens can also be caused by point and nonpoint sources. However, nonpoint sources of bacteria are much more difficult to control due to complex transport mechanisms and life cycles. In addition, the complicated nature of water-borne pathogen pollution enhances the infeasibility for pollution assessment and identification at the watershed scale. Continuous monitoring of pathogenic bacteria is so expensive, time consuming and spatially impractical at the watershed level that mathematical modeling has become a primary technology for analyzing waterborne pathogen pollution and its temporal variation and spatial distribution.
As a result, this study aims to evaluate the SWAT model’s capabilities for assessing coliform group loadings within Daiyujyue stream watershed. Eighteen years of climate, physiographic, hydrologic and water quality data were collected for SWAT calibration (1997~2006) and validation (2006~2014). The results indicate good modeling performances in monthly streamflow and sediment simulation with efficiency coefficients greater than 0.75. Moreover, monthly ammonia nitrogen and total nitrogen predictions show efficiency coefficients greater than 0.7. The monthly soluble and total phosphorus simulations also represent reasonable results (efficiency coefficients greater than 0.4). Finally, the annual simulations of coliform group (efficiency coefficient of 0.72 and relative error less than 2%) demonstrate SWAT model’s capabilities in water-borne pathogen simulation for long term perspective of watershed managements. Overall evaluations conclude that SWAT is a useful tool to model the hydrologic and water quality responses of the mixed land use watershed. It could be further applied on TMDL (Total Maximum Daily Load) development in estimating allowable pollutant loadings to receiving water bodies and allocating pollutant loads between point and nonpoint sources within the watershed. The complete TMDLs should provide sufficient details and guidance for better decision making in watershed managements to effectively alleviate pollutant loadings and preserve a healthy ecosystem.
論文目次:摘 要 i
ABSTRACT iii
誌 謝 v
目 錄 vi
表目錄 viii
圖目錄 x
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究目的 3
1.4 研究架構及流程 4
第二章 文獻回顧 6
2.1 微生物 6
2.1.1 水傳播微生物 6
2.1.2 影響微生物生長因子 8
2.1.3 指標微生物 10
2.2 SWAT模式之應用 12
2.2.1 SWAT模式應用於微生物模擬 13
第三章 研究方法 16
3.1 模式沿革 16
3.2 模式介紹 18
3.2.1 水文 19
3.2.2 泥沙 27
3.2.3 氮 29
3.2.4 磷 31
3.2.5 細菌 33
3.3 研究區域 45
3.3.1 子集水區之劃分 46
3.3.2 土地利用狀況 47
3.3.3 土壤種類分佈 48
3.3.4 測站分佈 49
3.3.5 氣候及水文 50
3.4 資料收集 50
3.4.1 氣象資料 50
3.4.2 水文與水質監測資料 51
3.4.3 茶園施肥 53
3.4.4 農地施肥 55
3.4.5 露營區排放量 57
3.4.6 居住人口排放量 60
3.4.7 自然背景設置 61
3.5 模式檢定驗證 63
3.5.1 配適度檢定 67
第四章 結果與討論 70
4.1 流量模擬 70
4.2 泥砂量模擬 76
4.3 營養鹽模擬 80
4.3.1 氨氮模擬 81
4.3.2 硝酸態氮模擬 85
4.3.3 總氮模擬 89
4.3.4 溶解性磷模擬 93
4.3.5 總磷模擬 97
4.4 大腸桿菌群模擬 101
第五章 結論與建議 107
5.1 結論 107
5.2 建議 108
參考文獻 110
論文參考文獻:1.Arias, C., M. R. Sala, A. Dominguez, R. Bartolome, A. Benavente, P. Veciana, A. Pedrol and G. Hoyo. (2006). Waterborne epidemic outbreak of Shigella sonnei gastroenteritis in Santa Maria de Palautordera, Catalonia, Spain. Epidemiology and Infection 134:598-604.
2.Armon, R. and Kott, Y. (1996). Bacteriophages as indicators of pollution. Critical Reviews in Environmental Science and Technology, 26, 299-355.
3.Arnold, J.G., Kiniry, J.R., Srinivasan, R., et al., “Soil and Water Assessment Tool Input/Output Documentation Version 2012,”, 2012.
4.Baffaut, C. 2006. Little Sac River watershed fecal coliform total maximum daily load. FAPRI‐UMC Report No. 11‐06. Columbia, Mo.: Food and Agricultural Policy Research Institute.
5.Baffaut, C., & Sadeghi, A. (2010). BACTERIA MODELING WITH SWAT FOR ASSESSMENT AND REMEDIATION STUDIES: A REVIEW. Transactions of the Asabe, 53(5), 1585-1594.
6.Baffaut, C., and V. W. Benson. 2009. Modeling flow and pollutant transport in a karst watershed with SWAT. Trans. ASABE 52(2): 469‐479.
7.Bougeard, M., J.‐C. Le Saux, R. Gnouma, S. Dupont, and M. Pommepuy. 2008. Modélisation des flux de contamination fécale et de leur impact sur la zone littorale (conséquence sur la qualité des eaux conchycoles) Partie 1. Orléans, France: Agence de lEauLoireBretagne.Availableat:www.eauloirebretagne.fr/espace_documentaire/documents_en_ligne/fiches_de_synthes e/annee_2008. Accessed October 2009.
8.Bowie, G.W., W. Mills, D. Porcella, C. Campbell, J. Pagenkopf, G. Rupp, K. Johnson, P. Chan, S. Gherini, and C. Chamberlin. 1985. Rates, constants and kinetics formulations in surface water quality modeling. 2nd ed. USEPA/600/3-85-040.
9.Cabelli, V.J., Dufour, A.P., Mccabe, L.J., and Levin, M.A. (1982). Swimming-Associated Gastroenteritis and Water-Quality. American Journal of Epidemiology 115, 606-616.
10.Chin, D. A., Sakura-Lemessy, D., Bosch, D. D., & Gay, P. A. (2009). Watershed-scale fate and transport of bacteria. Transactions of the Asabe, 52(1), 145-154.
11.Cho, K. H., Pachepsky, Y. A., Kim, J. H., Kim, J. W., & Park, M. H. (2012). The modified SWAT model for predicting fecal coliforms in the Wachusett Reservoir Watershed, USA. Water Research, 46(15), 4750-4760. doi: 10.1016/j.watres.2012.05.057.
12.Chung, S.W., Gassman, P.W., Kramer, L.A., Williams, J.R., and Gu., R., “Validation of EPIC for two watersheds in southwest Iowa,”J.Environ. Qual., Vol28, No. 3, pp. 971-979, 1999.
13.Coffey, R., Cummins, E., Bhreathnach, N., Flaherty, V. O., & Cormican, M. (2010). Development of a pathogen transport model for Irish catchments using SWAT. Agricultural Water Management, 97(1), 101-111. doi: 10.1016/j.agwat.2009.08.017.
14.Coffey, R., Dorai-Raj, S., OFlaherty, V., Cormican, M., & Cummins, E. (2013). Modeling of Pathogen Indicator Organisms in a Small-Scale Agricultural Catchment Using SWAT. Human and Ecological Risk Assessment, 19(1), 232-253. doi: 10.1080/10807039.2012.701983.
15.Eisenstein, L., D. Bodarger and D. Ginzl. 2008. Outbreak of giardiasis and cryptosporidiosis associated with a neighborhood interactrive water fountain--Florida, 2006. Journal of Evironmental Health 71:18-22; quiz 49-50.
16.Fleisher, J.M., Jones, F., Kay, D., Stanwellsmith, R., Wyer, M., and Morano, R. (1993). Water and non-water-related risk-factors for gastroenteritis among bathers exposed to sewage-contaminated marine waters. International Journal of Epidemiology 22, 698-708.
17.Fleisher, J.M., Kay, D., Wyer, M., and Merrett, H. (1996). The enterovirus test in the assessment of recreational water-associated gastroenteritis. Water Research 30, 2341-2346.
18.Herwaldt, B. L., Craun, G. F., Stokes, S. L., and Juranek, D. D. (1992). Outbreaks of waterborne disease in the United States: 1989~90. J. Am. Water Works Assoc. 84, 129~135.
19.Izard, D., Ferragut, C., Gavini, F., Kersters, K., Deley, J., and Leclerc, H. (1981). Klebsiella terrigena, a New Species from Soil and Water. Systematic and Evolutionary Microbiology 31, 116-127.
20.Jayakody, P., Parajuli, P. B., & Brooks, J. P. (2015). Assessing Climate Variability Impact on Thermotolerant Coliform Bacteria in Surface Water. Human and Ecological Risk Assessment, 21(3), 691-706. doi: 10.1080/10807039.2014.909188
21.Kay, D., Fleisher, J.M., Salmon, R.L., Jones, F., Wyer, M.D., Godfree, A.F., Zelenauchjacquotte, Z., and Shore, R. (1994). Predicting likelihood of gastroenteritis from sea bathing - results from randomized exposure. Lancet 344, 905-909.
22.Lam, Q.D., Schmalz, B., Fothrer, N., “The impact of agricultural Best Management Practices on water quality in a North German lowland catchment,”Environmental Monitoring and Assessment, Vol. 183, No. 1-4, pp. 351-379, 2010.
23.Loague, K., Green R.E., “Statistical and Graphical Methods for Evaluating Solute Transport Models: Overview and Application,” Journal of Contaminant Hydrology, Vol. 7, No. 1-2, 1991.
24.M. Kang, S. Park, J. Lee and K. Yoo, "Applying SWAT for TMDL programs to a small watershed containing rice paddy fields," Agricultural Water Management, vol. 79, no. 1, 2006, pp. 72-92.
25.Maier, Raina M., Pepper, Ian L., Gerba, Charles P. (2000). Environmental Microbiology.
26.Marshall, M. M., D. Naumovitz, Y. Ortega and C. R. Sterling. 1997. Waterbrone protozoan pathogens. Clinical Microbiology Reviews 10:67-&.
27.McElroy, A.D., S.Y. Chiu, J.W. Nebgen, A. Aleti, and F.W. Bennett. 1976. Loading functions for assessment of water pollution from nonpoint sources. Environ. Prot. Tech. Serv., EPA 600/2-76-151.
28.Moore, J.A., J.D. Smyth, E.S. Baker, J.R. Miner, and D.C. Moffit. 1989. Modeling bacteria movement in livestock manure systems. Trans. ASAE 32: 1049-1053.
29.Nash, J.E., Stucliffe, J.V., “River Flow Forecasting Through Conceptual Models. Part I - A Discussion of Principles,”Journal of Hydrology, Vol. 10, No. 3, pp. 282-290, 1970.
30.Parajuli, P., K. R. Mankin, and P. L. Barnes. 2006. Modeling sources of fecal coliform bacteria using SWAT/microbial sub‐model. ASABE Paper No. 062196. St Joseph, Mich.: ASABE.
31.Parajuli, P., K. R. Mankin, and P. L. Barnes. 2009. Source‐specific fecal bacteria modeling using soil and water assessment tool model. Bioresource Tech. 100(2): 953‐963.
32.Reddy, K.R., R. Khaleel, and M.R. Overcash. 1981. Behavior and transport of microbial pathogens and indicator organisms in soils treated with organic wastes. J. Environ. Qual. 10: 255-266.
33.S. L. Neitsch, J. G. Arnold, J. R. Kiniry and J. R. Williams, Soil and Water Assessment Tool Theoretical Documentation Version 2009, Texas: grassland, soil and water research laboratory, agricultural research service, 2011.
34.Snow, J. (1855). On the mode of communication of cholera (, London, J. Churchill).
35.Straub, T.M., Quinonez-Diza, M.J. and Valdez, C.O. (2006). Multiplexed detection of indicator bacteria and pathogens in water samples using DNA arrays. Abstracts of the General Meeting of the American Society for Microbiology, 103, Q-207.
36.Tong, S.T.Y., Naramngam, S., “Modeling the impacts of farming practices on water quality in the Little Miami River basin,”Environmental Management, Vol. 39, No. 6, pp. 853-866, 2007.
37.Wang, J.T., Chang, S.C., Chen, Y.C., and Luh, K.T. (2000). Comparison of antimicrobial susceptibility of Citrobacter freundii isolates in two different time periods. The Journal of Microbiology, Immunology and Infection 33 258-262.
38.Wang, X., Harmel, R.D., Williams, J.R., and Harman, W.L., “Evalustion of EPIC for assessing crop yield, runoff, sediment and nutrient losses from watersheds with poultry litter fertilization,”Transactions of the American Society of Agricultural Engineers, Vol. 49, No. 1, pp. 47–59, 2006.
39.WHO, (2006). Guidelines for Drinking-water Quality: First Addendum to Volume 1: Recommendations.
40.WHO, (2015). Global Health Observatory Data Repository.World Health Organization.http://apps.who.int/gho.
41.Williams, J.R. and R.W. Hann. 1978. Optimal operation of large agricultural watersheds with water quality constraints. Texas Water Resources Institute, Texas A&M Univ., Tech. Rept. No. 96.
42.王進琦,微生物學實驗,藝軒圖書出版社,2000年。
43.交通部中央氣象局,氣象資料開放平臺-http://opendata.cwb.gov.tw/index, 2013。
44.行政院農業委員會林務局,跨單位物種查詢平台,http://ngismap.forest.gov.tw/speciesquery/TopicImage.aspx。
45.行政院農業委員會農糧署,作物施肥手冊,http://www.afa.gov.tw/publish_tree.asp?catid=70。
46.新北市坪林區公所網站,http://www.pinglin.ntpc.gov.tw/content/?parent_id=10114。
47.吳政緯,翡翠水庫營養鹽之總最大日負荷規劃,碩士論文,國立臺北科技大學土木與防災研究所,臺北,2010。
48.吳海音,台東縣東河鄉台灣獼猴族群數量估算計畫,2015。
49.李玲玲,玉山國家公園南二段地區中大型哺乳動物調查暨台灣水鹿族群監測計畫,內政部營建署玉山國家公園管理處,2007
50.谷繼承,動物遺傳資源保護與管理譯文選編,中國農業出版社,2010。
51.周義翔,應用類神經網路預測船舶壓艙水指標性微生物數量之研究,碩士論文,國立臺灣海洋大學輪機工程學系,基隆,2013。
52.於幼華,環境科學大辭典,光華書局,2002。
53.林育丞,翡翠水庫集水區非點源污染削減效率評估與不確定性分析,碩士論文,國立臺北科技大學土木與防災研究所,臺北,2012。
54.施恆益,應用概似不確定性估計(GLUE)於集水區營養鹽總最大日負荷規劃,碩士論文,國立臺北科技大學土木與防災研究所,臺北,2013。
55.范震華、林宗以、張書德、楊書懿、翁國精,臺灣水鹿族群密度估算方法評估,台灣生物多樣性研究,第十六卷,第四期,2014,第309- 322頁。
56.張尊國,翡翠水庫水源保護區污染源調查計畫,2005。
57.張學文,壽山國家自然公園山羌族群現況研究,2014。
58.郭韋成,南化與曾文水庫藻類生長之限制因子探討,碩士論文,國立台南大學環境生態研究所,台南,2010
59.陳立宗,翡翠水庫集水區水文暨水質模擬,碩士論文,國立臺北科技大學土木與防災研究所,臺北,2009。
60.陳宏銘,環境微生物及生物處理,五南圖書出版社,2015年。
61. 陳貞志、孫穩翔、陳彥涵、林宇璇、章愛梅,墾丁國家公園東部地區小型食肉目動物狂犬病流行病學調查與監測,2015。
62.黃宇齊,翡翠水庫及水庫集水區水文暨水質模擬與其不確定性,碩士論文,國立臺北科技大學土木與防災研究所,臺北,2010。
63.臺北翡翠水庫管理局,翡翠水庫操作年報,1995~2014。
64.臺灣生物多樣性資訊網-TaiBIF,http://taibif.tw/zh。
65.裴家騏,永續資源保育體制的建構—共管保護區--環境資源的在地知識及長期監測(I),2009。
66.裴家騏,永續資源保育體制的建構—共管保護區--環境資源的在地知識及長期監測(II),2010。
67.賴鐵軍、郭祝武,應用統計學修訂二版,台北:全華科技圖書股份有限公司,2003,第13-6頁。
68.蘇秀慧,二水、名間地區臺灣獼猴生態調查及管理方案,2012。
69.蘇秀慧、粘書維,壽山國家自然公園臺灣獼猴族群密度及人猴互動,國家公園學報,第二十三卷,第三期,2013。
70.蘇秀慧、陳主恩、魏浚紘、陳朝圳,墾丁國家公園臺灣獼猴之族群密度與空間分佈,國家公園學報,第二十一卷,2011。
論文全文使用權限:同意授權於2022-08-28起公開