現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:含鋼板之鋼筋混凝土剪力牆連接梁耐震行為研究 [以論文名稱查詢館藏系統]
論文英文名稱:Study on Seismic Behavior for Steel Plate Reinforced Concrete Coupling Beams of Shear Walls [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木工程系土木與防災碩士班
畢業學年度:105
畢業學期:第二學期
出版年度:106
中文姓名:姚本濠
英文姓名:Pen-Hao Yao
研究生學號:104428025
學位類別:碩士
語文別:中文
口試日期:2017/07/26
論文頁數:190
指導教授中文名:黃昭勳;林敏郎
指導教授英文名:Chao-Hsun Huang;Min-Lang Lin
口試委員中文名:林克強;鍾立來;黃昭勳;林敏郎
中文關鍵詞:剪力牆連接梁剪力鋼板剪力強度韌性
英文關鍵詞:shear wallscoupling beamsshear steel plateshear strengthductility
論文中文摘要:結構工程師在對剪力牆系統之連接梁(coupling beam)根據ACI規範做設計時,需在連接梁中配置縱向鋼筋、橫向鋼筋、對角向鋼筋與圍束鋼筋,其中使用對角向鋼筋之配筋形式於現場施工相當困難,由於對角向鋼筋必須有一定的伸展長度,故必須斜向插入剪力牆之邊界構材內,再加上圍束鋼筋於現場施做時,因連接梁內縱向與橫向鋼筋之排置緊密,造成現場施工上有許多的困難。為了解決規範之對角鋼筋籠所造成的施工問題,國震中心近期研究已完成各種簡化對角鋼筋之配筋及驗証傳統梁配筋之行為表現,由實驗結果顯示,對角鋼筋用量明顯影響連接梁後期之剪力強度及整體韌性;而僅配直通鋼筋之傳統梁配筋型式連接梁,可發展足夠彎矩強度,但在後期易因剪力強度衰降快速,使得整體韌性不足。採用傳統梁配筋之連接梁若能減緩後期剪力強度衰降速度並提升韌性能力,將可取代對角向配筋設計,解決現場施工難題,進而普級韌性剪力牆系統之應用。
本研究針對傳統梁配筋型式連接梁韌性不佳之問題,提出於RC連接梁內部置入剪力鋼板之改善方案,由於置入之鋼板主要提供剪力強度,並非提供彎矩強度,因此,僅需使用少量之鋼板面積,且端部僅需剪力傳遞,故邊界構材之端部錨定相對容易許多,此型式之連接梁更具備可預鑄之優勢,故極具研發價值。本研究主要經由實驗與分析之方式,進行六座跨深比2之連接梁試體,經由雙曲率與零軸壓之狀態下進行反覆載重試驗,發展置入鋼板於邊界構材之端部錨定型式,探討不同鋼板添加量對於連接梁剪力強度提升效果與韌性改善情形,並提出置入鋼板及端部錨定之設計方法。
試驗結果顯示超過ACI 318-14規定之剪力上限之傳統型連接梁試體,不僅發揮其撓曲能力,也展現極限層間位移大於4%之位移能力,而在不同鋼板錨定長度之試體中,可看到能藉由改變錨定長度來控制撓曲強度之發展,從不同用鋼量之試體中,可得知較少用鋼量之試體,能展現較良好之耐震行為。
論文英文摘要:Structural engineers in the coupling beams of the shear wall system in accordance with ACI specifications to design, that need to configure the longitudinal reinforcement, transverse reinforcement and diagonal reinforcement in coupling beams. Which the use of the diagonal reinforcement is difficult to work on site, because of the diagonal reinforcement must have a certain length of the extension. It must be extend into the boundary wall of the shear wall structure compared with the strirrups on site to work. The vertical and horizontal reinforcement of the close arrangement, resulting in the construction site there are many difficulties. In order to solve the problem of diagonal reinforcement cage construction, the recent research has completed a variety of simplified diagonal reinforcement and verify the behavior of the traditional coupling beams performance, the experimental results show that the amount of diagonal reinforcement significantly affected the strength and overall ductility in the later stage of the coupling beam. But the traditional coupling beam with the longitudinal reinforcement can develop enough flexural strength, but it is easy to decay rapidly due to the shear strength in the later period, so the overall ductility is not enough. If adopt the coupling beams with the traditional configuration can slow down the decay rate of the later shear strength and enhance the ductility performance. It not only replace the diagonal reinforcement configuration, but also solve the problem of on site construction, and then the application of the general-level ductile shear wall system.
In order to solve the problem of the ductility performance of the traditional coupling beam. This paper proposed the improvement scheme of shear steel plate inside the RC coupling beam. Since the steel plate mainly provides the shear strength and does not provide the flexural strength. The use of a small amount of steel plate area, and only the end of the shear force transmission, so the end of the border structure of the anchor is relatively easy. This type of coupling beam can be pre-cast with the advantages of great research and development value. This research mainly carries on the experiment in the way of the experiment and the analysis, on the six crosses the aspect ratio 2 coupling beam specimen carries on the duplicate load test through the double curvature and the zero axial pressure condition, discusses the different quantity of steel plate configuration in order to improve the shear strength and the ductility performance of the coupling beam. The end anchorage type of the steel plate in the boundary member is developed. Finally, we expect to propose the design method of steel plate and end anchorage.
The test results show that the traditional coupling beam specimen exceeding the upper limit of the shear force specified in ACI 318-14 not only exhibits its flexural capacity but also exhibits displacement capacity of more than 4% ultimate drift ratio. While the anchors with different lengths of anchors , It can be seen that the development of flexural strength can be controlled by changing the anchoring length, and it is possible to know the specimen with less steel quantity from the different amount of steel.
論文目次:目錄

摘 要 i
ABSTRACT iii
誌 謝 vi
目錄 vii
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1研究動機與目的 1
1.2研究內容與方法 3
第二章 文獻回顧 5
2.1美國規範ACI 318-14於連接梁之規定 5
2.2剪力牆連接梁之相關研究測試與結果 5
2.3軟化壓拉桿模型 20
第三章 試驗規劃 29
3.1前言 29
3.2試體設計 30
3.3試體製作 41
3.4測試布置 51
3.5量測系統布置 56
3.6測試步驟 65
第四章 試驗過程與結果 68
4.1前言 68
4.2材料試驗 68
4.3試體載重與位移行為曲線 74
4.4應變計量測 116
4.5裂縫發展與破壞模式 118
第五章 試驗分析與討論 151
5.1前言 151
5.2撓曲與剪力強度之分析與破壞模式之預測 157
5.3鋼板對連接梁行為之貢獻 162
5.4鋼板錨定長度對連接梁行為之影響 163
5.5鋼板添加量對連接梁行為之影響 166
5.6增加鋼板與混凝土接觸面積對連接梁行為之影響 168
第六章 結論與建議 170
6.1結論 170
6.2未來研究與展望 172
參考文獻 173
附錄A 本次試體於ACI 318-14規範設計之檢核 178
附錄B 試體剪力強度計算 182
附錄C 鋼板錨定長度需求之計算 187
論文參考文獻:[1] Fintel, M., ―Shear Walls – An Answer for Seismic Resistance? Concrete International, American Concrete Institute, 1991, pp. 48-53.
[2] Park, R.,“The Paulay Years,” Recent Developments in Lateral Force Transfer in Buildings,Thomas Paulay Symposium, SP-157, American Concrete Institute, Farmington Hill, 1995, pp. 1-29, 1995.
[3] ACI Committee 318, Building Code Requirements for Structural Concrete (318-99) and Commentary (ACI318-99R), American Concrete Institute, Farmington Hills, Mich., 1999.
[4] Wallace, J. W.,“Modeling Issue for Tall Reinforced Concrete Core Wall Buildings,”Structural Design of Tall and Special Buildings, Vol. 16, No. 5, pp. 615-632, 2007.
[5] ACI Committee 318, ―Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14) American Concrete Institute, Farmington Hills, 2014.
[6] ACI Committee 374, ―Acceptance Criteria for Moment Frames Based on Structural Testing and Commentary, American Concrete Institute, Farmington Hills, 2005.
[7] Foster,S. J., and Gilbert, R. I., ―The design of nonflexural members with normal and high-strength concrete, ASCE Structural Journal, Vol. 93, No. 1, 1996, pp. 3-10
[8] Paulay, T., and Binney, J.R., “Diagonally Reinforced Coupling Beams of Shear Walls”, Shear in Reinforced Concrete, SP-42, V.2, American Concrete Institute, Farmington Hills, Mich., 1974, pp.579-598.
[9] Paulay, T., and Santhakumar, A.R., “Ductile Behavior of Coupled Shear Walls”, Journal of the Structural Division, ASCE, V.102, 1976, pp.93-108.
[10] Tanuwidjaja, H., R., ―Coupling Beams in The Satrio Tower, Concrete International, May 2007, pp. 59-63.
[11] Wong, P. K. C., Priestley, M. J. N., and Park, R., ―Seismic Resistance of Frames with Vertically Distributed Longitudinal Reinforcement in Beams, ACI Structural Journal, Vol.87, No.4, July-August 1990, pp. 488-498.
[12] Harries, K. A., Mitchell, D., Cook, W. D., and Redwood, R. G. (1993).“Seismic response of steel beams coupling concrete walls.” J. Struct.Eng., 119(12), 3611–3629.
[13] Harries, K.A., Cook, W.D., and Mitchell, D. (1996). “Seismic retrofit of reinforced concrete coupling beams using steel plates.” ACI SP-160, 6(1), pp.93-114.
[14] Teng, J. G., Chen, J. F., and Lee, Y. C. (1999). “Concrete-filled steel tubes as coupling beams for RC shear walls.” Proc., 2nd International Conf. Advanced Steel Structures, Hong Kong, 391–399.
[15] Lam, W. Y., Su, R. K. L., and Pam, H. J. (2001). “Embedded steel composite coupling beams—A new proposal.” Proc., International Conf. Construction, Hong Kong, Vol. 2, 93–104.
[16] Lam W.Y., Su R.K.L. & Pam H.J. 2002. The Performance and Design of Embedded Steel Composite Coupling Beams. Proceeding of Structural Engineers World Congress 9-12 October 2002 (in CD Rom).
[17] Lam, W. Y., Su, R. K. L., and Pam, H. J. (2003). “Strength and ductility of embedded steel composite coupling beams.” Int. J. Adv. Struct. Eng., 6(1), 23–35.
[18] W.-Y. Lam, R. K.-L. Su, and H.-J. Pam, “Experimental study on embedded steel plate composite coupling beams,” Journal of Structural Engineering, vol. 131, no. 8, pp. 1294–1302, 2005.
[19] Su, R.K.L. and Zhu, Y. (2005). Experimental and numerical studies of external steel plates strengthened reinforcement concrete coupling beams. Engineering Structures, 27:10, 1537-1550.
[20] R. K. L. Su,W. Y. Lam, and H. J. Pam, “Behaviour of embedded steel plate in composite coupling beams,” Journal of Constructional Steel Research, vol. 64, no. 10, pp. 1112–1128, 2008.
[21] R. K. L. Su, W. Y. Lam, and H. J. Pam, “Experimental study of plate-reinforced composite deep coupling beams,” The Structural Design of Tall and Special Buildings, vol. 18, no. 3, pp. 235–257, 2009.
[22] R. K. L. Su and W. Y. Lam, “A unified design approach for plate-reinforced composite coupling beams,” Journal of Constructional Steel Research, vol. 65, no. 3, pp. 675–686, 2009.
[23] Su, R.K.L. and Cheng, B. (2011). Plate strengthened deep reinforced concrete coupling beams. ICE-Structures and Buildings, 164:1, 27-42.
[24] Hwang, S. J., and Lee, H. J., “Analytical Model for Predicting SfearStrengths of Interior Reinforceed Concreat Beam-Column Joint forSeismic Resistance”, ACI Structural Journal, Vol. 97, No 1, pp. 35-44.January-February 2000.
[25] 李宏仁、黃世建,「鋼筋混凝土結構D區域之剪力強度評估-軟化壓拉桿模型簡算法之實例應用」,結構工程,第十七卷,第四期,第53-70頁,2002。
[26] Hwang, S. J.,and Lee, H. J.,“Strength Prediction for Discontinuity Regions by Softened Strut-and Tie Model”, Journal of Structural Engineering, ASCE, Vol. 128, December 2002, pp. 1519-1526.
[27] Saha ̈fer, K., “Strut-and-Tie Models for the Design of Structural Concrete”, Notes of Workshop, Department of Civil Engineering, National Cheng Kung University, Taiwan 1996, pp. 140.
[28] Hsu, T. T. C., “Soften truss model theory for shear and torsion,” ACI Structural Journal, Vol. 85, pp. 624-635. 1988.
[29] 鄭志宏,「鋼筋混凝土剪力連接梁反覆載重測試之研究」,碩士論文,國立台灣大學土木工程系,台北,民國99年,指導教授:黃世建博士。
[30] 王亭惟,「鋼筋混凝土剪力連接梁耐震鋼筋配置之探討」,碩士論文,國立台灣大學土木工程系,台北,民國100年,指導教授:黃世建博士。
[31] 張于軒,「鋼筋混凝土剪力牆連接梁鋼筋配置之研究」,碩士論文,國立台灣大學土木工程系,台北,民國101年,指導教授:黃世建博士。
[32] 蔡尚錡,「鋼筋混凝土剪力牆連接梁耐震行為之研究」,碩士論文,國立台灣大學土木工程系,台北,民國102年,指導教授:黃世建博士。
[33] 林秉誼,「鋼筋混凝土剪力牆連接梁耐震配筋之研究」,碩士論文,國立台灣大學土木工程系,台北,民國103年,指導教授:黃世建博士。
[34] 楊善淳,「高強度鋼筋混凝土剪力牆耐震行為之研究」,碩士論文,國立台北科技大學土木工程系,台北,民國102年,指導教授:林至聰、林敏郎博士。
[35] 吳仲凱,「高強度鋼筋混凝土剪力牆耐震配筋之研究」,碩士論文,國立中央大學土木工程系,民國105年,指導教授:王勇智、林敏郎博士。
[36] Moehle, J. P., Ghodsi T., Hooper, J. D., Fields, D. C., Gedhada R.,”Seismic Design of Cast-in-Place Concrete Special Structural Walls and Coupling Beams,” NEHRP Seismic Design Technical Brief, Gaithersburg, MD, 2012
[37] Lequesne, R. D., ”Behavior and Design of High-Performance Fiber-Reinforced Concrete Coupling Beams and Coupled-Wall Systems,” Doctoral Dissertation, University of Michigan Ann., Michugan, 2011.
[38] Sherif El-Tawil,Ph.D“Seismic Design of Hybrid Coupled Wall Systems State of the Art”,ASCE,2010.
[39] Leo Panian,S.E.and Nick Bucci,S.E.“SFPUC Headquarters Building An Innovative High Performance Structure”STRUCTURE magazine,April 2013,p.30-32.
[40] XTRACT, “Cross-sectional X Structural Analysis of Components,” TRC, Vesion 3.0.1, 2004
[41] Mander,J.B., Priestley, M. J. N., and Park,R., “Seismic Design of Bridge Piers,” Research Report 84-2, Department of Civil Engineering , University of Canterbury, New Zealand, Rebruary, 1984,pp. 255.
論文全文使用權限:同意授權於2019-08-24起公開