現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:研製牛頓擺錘機構驗證發泡無機聚合材之落石 衝擊消能效果暨其複合型非破壞檢測 [以論文名稱查詢館藏系統]
論文英文名稱:Evaluation of Foamed Geopolymer as Rock-falling Impact-energy-absorbed Materials by Newton’s Cradle Apparatus in conjunction with Multi-physical Nondestructive Techniques [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木工程系土木與防災碩士班
畢業學年度:105
畢業學期:第二學期
出版年度:106
中文姓名:林哲毅
英文姓名:Zhe-Yi Lin
研究生學號:103428035
學位類別:碩士
語文別:中文
口試日期:2017/07/26
論文頁數:122
指導教授中文名:陳立憲
指導教授英文名:Li-Hsien Chen
口試委員中文名:楊元森;鄭大偉;張清雲
中文關鍵詞:發泡無機聚合物落石消能材多功能牛頓擺錘衝擊試驗機衝擊試驗影像分析
英文關鍵詞:foamed geopolymerRock falling Impact-Energy-Absorbed Construction MaterialsMultifunctional Newtons Cradle ApparatusImpact TestImage Analysis
論文中文摘要:臺灣因地理因素導致天災(地震、土石流等)頻傳,而對土石崩塌防護方面,顯得十分不足。臺灣各處如:基隆、花東、中橫及阿里山之崩塌事件,時有所聞。尤其最難監測與防護之落石事件常導致人、車、屋傷亡毀損,因此本研究參考日本三層式明隧道消能概念,其中之加強型EPS(發泡聚苯乙烯)具能量緩衝消能之效可達70 %;並自行開發多功能牛頓擺錘衝擊試驗機;並結合接觸與非接觸式各兩種之動態量測系統,作為評估衝擊試驗中消能材之特徵與驗效。
本研究首次使用發泡無機聚合物作為落石衝擊試驗之消能材。無機聚合材料溯自1987年迄今,均以發泡材料作為隔熱、防火材料及隔音、震等物理材料特性探討;故本研究嘗試以發泡無機聚合材取代EPS之可能;原料使用飛灰、爐石乃至未來用水庫淤泥,冀可達落石衝擊防護消能之效果;却又可增加廢棄物回收再利用之雙效俾達工程、經濟、環保等多向性之多贏局面。
首先以靜態試驗求得基本材料之物理性質而經實驗比對;發泡無機聚合材其落石消能效果可臻至72 %。多功能牛頓擺錘試驗機則採模組化設計,即其擺錘重、衝頭幾何形狀、受測試體尺寸等皆可依實際能量需求調整(能量範圍:0~1118 J),試驗機毋須另外加載系統,並可由下衝與上擺角度變化即時得知材料之消能效果;另於動態量測上,錘頭下衝與上擺之兩端內嵌加速度計與動態荷重計(接觸式);再結合非接觸式之高速攝影機求得衝擊變形場,各數化資料之同步耦合,故可求得局部與全域之變形或位移、加速度場,進而得知消能構材受衝擊後的韌度與能量吸收效率等緩衝特性。
論文英文摘要:Natural disasters (earthquake and rock fall) frequently occur in Taiwan due to the geographical factors. However, landslide protection is not adequate. Rock fall events are often heard in Keelung, Hualien, Taitung, Central Cross and Alishan. Especially, rock fall event which is most difficultly monitored and prevented often cause injuries and deaths of people and damage to vehicles and houses. With reference to the energy dissipation concept for the three-layer open tunnel in Japan, reinforced EPS (expanded polystyrene) can dissipate 70% of energy. This study develops multifunctional Newtons Cradle Apparatus, and uses the contact and non-contact dynamic measuring systems to evaluate characteristics and effect of the energy dissipation material in the impact tests.
In this study, foamed geopoloymer is first used as the energy dissipation material in rock fall impact test. Since1987, geopolymer is often discussed to the characteristics as heat insulation, fireproof, sound insulation and earthquake material; Therefore, this study attempts to discuss possibility of replacing EPS with foamed geopolymer. The raw material consists of fly ash, hearthstone and even reservoir sludge, which may be used to achieve effect of energy dissipation on fallen rocks; This can also facilitate recycling and reusing of wastes, which can benefit projects, economical efficiency and environment protection.
First, the static test is conducted to determine physical properties of the basic materials for comparison; The foamed geopolymer can dissipate 72% of energy. The multifunctional Newton’s Cradle Apparatus is based on modular design; the weight of the pendulum bob, shape of the head and size of the tested body depends on the actual energy demand (range of 0~1118 J). The apparatus must be combined with the systems, so as to obtain the effect of energy dissipation of the material with changes of the lower and upper pendulum angles. In the dynamic measurement, an accelerometer and a dynamic load cell (contact) are inlaid between the lower and upper pendulums of the bob; In the noncontact measurement, a high-speed camera is used to obtain impact deformation field, and digital data are synchronously coupled to determine local and global deformation or displacement and the acceleration field, so as to obtain the buffer characteristics such as viscosity and energy absorption efficiency of the energy dissipation structures after impact.
論文目次:摘要 i
ABSTRACT iii
誌謝 v
目錄 vi
表目錄 ix
圖目錄 xi
第一章 緒論 1
1.1 動機與目的 1
1.2 範圍與方法 2
1.3 架構與內容 3
第二章 文獻回顧 5
2.1 無機聚合材 5
2.1.1 無機聚合材之特性 5
2.1.2 無機聚合材之結構與反應機制 7
2.1.3 無機聚合材之組成 10
2.1.4 無機聚合材孔隙控制 11
2.1.5 無機聚合材之應用發展 13
2.2 落石災害探討 14
2.2.1 落石運動特徵 14
2.2.2 落石發生機制 18
2.3 台灣近期落石災害事件統計與潛勢區 20
2.4 落石防護工法 23
2.4.1 剛性防護工法 25
2.4.2 柔性防護工法 27
2.4.3 剛-柔相疊之三層式明隧道緩衝裝置 28
2.5 消能構材與能量吸收效率 30
2.6 傳統衝擊試驗 31
2.6.1 落錘衝擊試驗 31
2.6.2 擺錘衝擊試驗 31
2.7 影像量測與變位分析 32
第三章 試驗架構與執行 33
3.1 試驗規劃與流程 33
3.2 試驗材料 34
3.2.1 試體原料 34
3.2.2 發泡劑 39
3.2.3 試體配比製備 40
3.2.4 發泡膨脹率測試 43
3.2.5 基本物理性質與力學試驗 44
3.3 試驗儀器與設備 46
3.3.1 多功能牛頓擺錘試驗機 46
3.3.2 接觸式量測系統-加速度計與動態荷重計 58
3.3.3 非接觸式量測系統-雙相機影像分析與變位量測 63
3.3.4 非接觸式量測-施密特錘衝擊與聲學量測 69
3.4 試驗施作流程 70
3.4.1單軸壓縮試驗 70
3.4.2牛頓擺錘衝擊試驗 72
3.4.3 施密特錘衝擊試驗 74
第四章 實驗結果與分析 76
4.1 試體代號描述 76
4.2 基本物理性質試驗 78
4.3 發泡材力學性質試驗影響 80
4.3.1 壓縮性能求算 80
4.3.2 消能材應力-應變曲線 83
4.3.3 能量消能效率 85
4.4 牛頓擺錘衝擊試驗 89
4.4.1 接觸式量測衝擊力、加速度結果 89
4.4.2 非接觸式量測影像變位結果 94
4.4.3 消能材受衝擊後變形凹陷量測 104
4.5 發泡無機聚合材與高分子消能構材-消能率比較 106
4.6 施密特錘衝擊試驗 108
4.6.1 接觸式衝擊量測-反彈數 109
4.6.2 非接觸式衝擊量測-分貝值(dB) 111
第五章 結論與建議 112
5.1 結論 112
5.2 建議 113
參考文獻 114
附錄 符號說明表 120
論文參考文獻:1.小林一隆,「日本落石對策概論」,太魯閣峽谷旅遊安全提升研討會,花蓮,台灣,2013。
2.日本道路協會,「日本落石對策便覽」,日本道路協會,pp.9-204,2000,239-353。
3.王克俭 (譯),地聚合物化學及應用,中國,國防工業出版社,2011,Davidovits, J.,2008。
4.王亦惟,發泡無機聚合物之開發及耐熱性能研究,碩士論文,國立台北科技大學土木與防災研究所,台北,2009。
5.田島與典、岩崎征夫、陳立憲、徐紳翔,「落石防治之BRN柔性工法設計與施工」,地工技術NO.138,2013,pp.27-38。
6. 佐藤昌志、岸德光、松岡健一,「三層緩衝構造傳達衝撃力計算公式化」,構造工學論文集,42A,1996,pp.1337-1346。
7.岸得光、佐藤昌志、中野修,「三層緩衝構造緩衝性能的大型野外實驗」,構造文學論文集,41A,1995,pp.1257-1265。
8.黃竹慶,發泡無機聚合物高溫延時性能探討,碩士論文,國立台北科技大學土木與防災研究所,台北,2014。
9.前川幸次、田島與典、島田優、村田佳久、明永卓也、渡邊忍,「使用土工格柵與格室的加勁擋土牆於足尺邊坡落石試驗之效用」,土工合成材料論文集25,pp.221-226。
10.陳泓姳,翼牆與單鋼柱實驗之影像量測與嵌入式系統系基之可行性,碩士論文,國立台北科技大學土木與防災研究所,台北,2013。
11.陳星諺,無機聚合材料滲透特性與影響因子研究,碩士論文, 國立台北科技大學資源工程所,台北,2014。
12.張天益,「發泡型無機聚合物的研究」礦治季刊,第六十三卷,第一期,2011年,第49-59頁。
13.陳志賢,含矽質廢棄物之無機聚合物,博士論文,國立成功大學土木研究所,台南,2009。
14.楊立昌,無機聚合綠色水泥收縮性質與工作性質改善之研究,碩士論文,國立台北科技大學資源工程系,台北,2014。
15.鄭大偉,「無機聚合技術的發展應用及回顧」,礦治季刊,第五十四卷,第一期,2010,第140-157頁。
16.戴詩潔,高領石鋁矽酸鹽具和材料之研究,碩士論文, 國立台北科技大學資源工程所,台北,2005。
17.戴妤潔,發泡清質材料物理性質探討,碩士論文,國立台灣科技大學營建工程系,台北,2013。
18.CNS規範3036(卜特蘭水泥混凝土用飛灰及天然或煆燒卜作嵐攙和物)。
19.CNS規範7408(硬質發泡塑膠-壓縮性能測定法)。
20.CNS規範12549(混凝土及水泥砂漿用水淬高爐爐碴粉)。
21.Camera Calibration Toolbox for MATLAB. Available from: 2013, .http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
22.Davidovits, J., "Geopolymers Inorganic polymeric new materials, " Journal of Thermal Analysis, vol. 37, no 8 , 1991, pp 1633-1656.
23.Davidovits, J., "Fire proof geopolymeric cements," 99 geopolymer international conference proceedings, France, 1999.
24.Davidovits, J., "30 years of successes and failures in geopolymer applications. market trends and potential breakthroughs, " Geopolymer 2002 Conference, Melbourne, 2002, pp 1-16.
25.GEOBRUGG. "ROCKFALL-X™ damping system makes rockfall protection galleries even stronger." 2008.
26.Ko, M. S. Chen, H. Y. Lyu, S. J. Wang, T. T. and T. H. Ueng, " Permeation characteristics and impact factors of geopolymers made of kaolin, " Construction and building Materials,vol. 93, 2015, pp 301-308.
27.Lo, Y. L. Sung, P. H. Wang, H. J. and Chen, L. W. "Pressure vessel wall thinning detection using multiple pairs of fiber Bragg gratings for unbalanced strain measurements," Journal of nondestructive evaluation, vol. 19,no. 3, 2000, pp 105-113.
28.Lin, X. "Probing into Performance of New Type Geoplymer," Petroleum Engineering Construction, vol. 31,no. 5, 2005, pp 9-11.
29.Lambert, S, Gotteland, P, & Nicot, F. "Experimental study of the impact response of geocells as components of rockfall protection embankments." Natural Hazards and Earth System Science, 9(2), 2009, pp.459-467.
30.Lin, LK, Chen, LH, & Chen,"HL.Evaluation of geofoam as a geotechnical construction material."Journal of materials in civil engineering.2010, pp.160-169.
31.Li, Z. Liu, X. and Ren, Q., "Study on rock mass stability effect of hight water pressure tunnels by hydraulic fracturing failure". GeoShanghai 2010 International Conference, no. 206, 2010, pp164-169
32.Liu, Z. Shao, N. N. Wang, D.M. Qin, J. F. Huang,T. Song,Y. W. Lin, M. X. Yuan, J.S. and Wang, Z.,"Fabrication and properties of foam geopolymer using circulating fluidized bed combustion fly ash," International Journal of Minerals, Metallurgy, and Materials, vol. 21,no. 1, 2014, pp 89-94.
33.Ma, Y. Hu, J. and Ye, G.;The pore structure and permeability of alkali activated fly ash," Fuel, vol. 104, 2013, pp 771-780.
34.Ou, Z. W. Zhou, S. Y. Xu, C. X. Zhang, Y. J. Yang, C. and Li, Y. X., "Research and application of geopolymer cementitious material progress and review,"Applied Mechanics and Materials, vol. 405-408, 2013, pp 2903-2911.
35.Peila, D., Oggeri, C., & Castiglia, C. (2007)." Ground reinforced embankments for rockfall protection: Design and evaluation of full scale tests. Landslides", 4(3), 255-265.
36.SAM協會,「SAM工法設計與施工手冊」,SAM協會,2011,pp.1-12.
37.Xu, H. and V.Deventer, J. S. J., "The geopolymerisation of alumino-silicate minerals," International Journal of Mineral Processing, vol. 59, no. 3, 2000, pp 247-266.
38.Yang, Y.S, Huang,C.W, & Wu, C.L.;A simple image‐based strain measurement method for measuring the strain fields in an RC‐wall experiment." Earthquake Engineering & Structural Dynamics, 41(1), 2012 , pp.1-17.
論文全文使用權限:不同意授權