現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:電滲法結合微生物碳酸鈣膠結效應於黏土質地盤改良之研新 [以論文名稱查詢館藏系統]
論文英文名稱:Soil Improvement of Clay by Electroosmotic with Microbe-Induced Calcite Cementation [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木工程系土木與防災碩士班
畢業學年度:105
畢業學期:第二學期
出版年度:106
中文姓名:李金龍
英文姓名:Jin-Lung Li
研究生學號:103428037
學位類別:碩士
語文別:中文
口試日期:2017/07/27
論文頁數:106
指導教授中文名:陳立憲
口試委員中文名:李冠群;簡紹琦
中文關鍵詞:微生物碳酸鈣電滲法超音波脈衝掃描式電子顯微鏡元素分析
英文關鍵詞:MicrobeCalcium ChlorideElectro-osmosisUltrasonic PulseSEMEDS
論文中文摘要:  鑑於微生物為地質成岩、礦化過程重要因素之一,且台灣國土危脆,大地防災之需求日殷,凸顯出土壤強化改良與邊坡工程整治等需求刻不容緩。本研究嘗試突破傳統地質改良方式,如物理式地錨工程及化學式灌漿工程為主之既有技術選項,改用存在於土壤中之微生物改良強化土壤本身,再搭配電滲工法的技術,進行本研究之研探。亦即利用微生物之輔佐,進行永續性、長時性、生態性之地質改良,發展更近於自然之生態工程為主要宗旨。
  採用兩種具土壤改良成效之微生物(卓雨璇,2011),以此二菌先進行圓柱砂土試體改良,測定此二菌在砂土試體中之改良成效,再利用超音波(Ultrasonic Pulse)量測其波速之變化,經超音波量測之結果,菌種編號#26之剪力波速於72小時提升162 %,證實其改良成效並以此做為校驗,並以此試驗結果與既有改良方法做比對;本研究之重點則以黏性土壤為主,進行室內電滲試驗結合微生物作改良,藉由電滲期間水分會由正極往負極移動之特性,量測負極附近之土壤含水量變化以評估電滲效果,以扭剪試驗扭力值做為檢核其剪力強度是否增加之標準,再搭配微觀之掃描式電子顯微鏡(Scanning Electron Microscopy, SEM)及能量色散光譜(Energy Dispersive Spectroscopy, EDS )元素分析觀測微生物生長及碳酸鈣沉澱之情形,並探討電壓大小、電滲時間、覆土應力、微生物添加與否等變數,對電滲期間之含水量、扭剪試驗之影響進行一系列試驗及討論。
  結果顯示,在含水量試驗方面,電壓大小、電滲時間、覆土應力及添加微生物皆對於含水量之變化呈正相關;以電滲時間對含水量之影響較大,將電滲時間60分鐘拉長至120分鐘後,由7.3 %變為12.6 %,含水量上升約七成,電壓增加提升試驗電力坡降i_e,造成水分在黏土中之移動速率跟著提升,含水量跟著增加。在扭剪試驗方面,則皆呈負相關,於電滲時間5分鐘後,大幅下降60 %;電滲結合微生物改良方面,於電滲120分鐘後,將試體靜置24小時,再次施以扭剪試驗,扭力值因微生物碳酸鈣膠結造成不排水剪力強度提升258 %,表示在電滲120分鐘後,正極添加之微生物菌液移動至負極造成改良。最終本文提出電滲法結合微生物改良黏性土壤之設計與可行性芻議,未來應可作為相關土壤強化技術之參佐。
論文英文摘要:Microbe is one of the important factors of geological diagenesis and mineralization. Taiwan has fragile geological conditions, so prevention of earthquake disasters is required. Thus, it is urgent to reinforce and improve soil and repair side slop engineering. This study attempts to change the traditional geological improvement methods, such as anchorage and chemical grouting engineering. The microbes which exist in soil and electro-osmosis are combined to improve and reinforce the soil. In this way, the soil can be sustainably and ecologically improved. This contributes development of natural ecological engineering.
The two kinds of microbes are used for soil improvement (Jhuo, 2011). First, the two microbes are used to improve cylindrical sandy soil specimen so as to determine the improvement effect on the sandy soil specimens. Next, Ultrasonic Pulse is used to measure change of wave velocity. According to the ultrasound measurement results, the shear wave velocity of microbe #26 increased by 162 % in 72 hours. This has demonstrated they have improvement effect, and can be used as reference test. The reference test results are compared with the existing improvement method. This study is aimed at cohesive soil, and combines indoor electro-osmosis test with microbe for improvement. During electro-osmosis, the water content can move from the anode to the cathode. The water content of the soil around the cathode is measured so as to evaluate effect of electro-osmosis. The shear torque test results are used as the standard to check increase in the shear strength. Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) are combined to analyze and observe microbe growth and precipitation of calcium chloride, and discuss and verify the effect of voltage, electro-osmosis time, soil stress and addition of microbes on the water content and the shear torque test during electro-osmosis.
The results show that the voltage, electro-osmosis time, soil stress and addition of microbe are positively related to the change of water content in the test; The effect of electro-osmosis time on the water content is greater. When the electro osmotic time increased from 60 minutes to 120 minutes, the water content increased from 7.3 % to 12.6 %, increased by 70 %. Voltage increased, and the electric gradient i_e also increased, which cause increase in movement speed of water in the soil, thus, the water content increased. In the shear torque test, the variables are negatively related. After 5 minutes of the electro-osmosis, the water decreased by 60 %, and this is due to undrain water on cathode, and water accumulated around the cathode has lubrication effect. As the electro-osmosis time increased, the torque value tended to be stable; The soil improved by microbes, after the electro-osmosis test is conducted for 120 minutes, the specimen stands for 24h, and then undergoes the shear torque test. According to the torque value, the shear strength increased by 258 % as microbe induced calcium chloride to cement soil. This shows after 120 minutes of the electro-osmosis test, the added microbe in the anode moves to the cathode, which can improve soil. Finally, this study discusses the design and feasibility of the electro-osmosis combined with microbe in improvement of cohesive soils, which can serve as reference for soil reinforcement techniques.
論文目次:摘 要 i
ABSTRACT iii
誌 謝 v
目 錄 vii
表目錄 x
圖目錄 xi
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究範圍與方法 2
1.3 研究內容與架構 2
第二章 文獻回顧 6
2.1微生物於地質工程之作用 6
2.1.1微生物之成岩成礦作用 9
2.1.2微生物引致碳酸鈣沉澱之生化機制 9
2.2 微生物技術於土木與大地工程之應用 14
2.2.1微生物對砂土不排水剪力強度改良之影響 14
2.2.2微生物技術應用於混凝土修復及土壤改良 15
2.3 電滲工法 17
2.3.1電滲現象 18
2.3.2 電滲化學反應 20
2.3.3 電滲流量理論 21
2.3.4 電滲壓密理論 24
2.3.5 電滲改良工法適用之土壤種類 26
第三章 試驗儀設與方法 29
3.1 培養基選擇與微生物培養 29
3.2 微生物式砂性土壤改良驗證 31
3.2.1 砂土物理性質 32
3.2.2 砂土試體製備 32
3.2.3超音波脈衝試驗 33
3.3 掃描式電子顯微鏡與元素分析 35
3.4 室內土壤改良試驗 38
3.4.1 主體設備 38
3.4.2 電力設備 41
3.4.3 加壓裝置 43
3.4.4 量測設備 47
3.5 室內電滲土壤改良試驗程序 49
3.5.1 重模試體製作 49
3.5.2 試體壓密 51
3.5.3 電滲試驗與黏土含水量試驗 52
3.5.4 扭剪試驗 54
第四章 試驗結果與分析 56
4.1 改良砂土試體之剪力波速 59
4.2 碳酸鈣膠結物之微觀造影及元素分析 60
4.3 電滲試驗結合微生物改良黏性土壤之含水量監測 63
4.3.1 含水量監測說明 65
4.3.2 電滲時間對負極含水量之影響 66
4.3.3 電壓大小對負極含水量之影響 68
4.3.4 覆土應力對負極含水量之影響 71
4.3.5 微生物改良對正負極含水量之影響 73
4.4 扭剪試驗之結果分析 77
4.4.1 扭剪試驗說明 77
4.4.2 電滲時間對負極扭剪試驗之影響 77
4.4.3 電壓大小對負極扭剪試驗之影響 80
4.4.4 覆土應力對負極扭剪試驗之影響 82
4.4.5 微生物改良對負極扭剪試驗之影響 83
4.5微生物改良負極端黏土之微觀造影及元素分析 87
第五章 結論與建議 93
5.1 結論 93
5.1.1 微生物引致碳酸鈣沉澱機制 93
5.1.2 改良砂土試體之超音波脈衝檢測、微觀造影與元素分析 93
5.1.3 室內電滲試驗結合微生物改良黏性土壤之成效 94
5.2 建議 95
參考文獻 98
附錄 A 口試委員意見回覆表 102
符號對照表 104
中英對照表 106
論文參考文獻:1. Alrubaye, A. J., Hasan, M. and Fattah, M. Y., ”Engineering properties of clayey soil stabilized with lime,” Journal of Engineering and Applied Sciences, vol. 11, 2016.
2. Bachmeier, K. L., Williams, A. E., Warmington, J. R. and Bang, S. S., “Urease activity in microbiologically-induced calcite precipitation,” Journal of Biotechnology , vol. 93, 2002, pp. 171-181.
3. Ciurli, S., Marzadori, C., Benini, S., Deiana, S. and Gessa, C.,” Urease from the soil bacterium Bacillus pasteurii : immobilization on Ca-polygalcturonate,” Soil Biology and Biochemitry, vol. 28, No 6, 1996, pp. 811-817.
4. Cameselle, C., ”Enhancement of electro-osmotic flow during the eletrokinetic treatment of contaminated soil, ” Electrochemica Acta, vol.181, 2015, pp.31-38
5. Chien, S. C., Teng, F. C. and Ou, C. Y., ” Soil improvement of electroosmosis with the chemical treatment using the suitable operation process, ” Acta Geotechenica, vol.10, 2015, pp. 813-820.
6. Chien, S. C., Ou, C. Y. and Hsieh, P. G., ” A study of soil improvement using electro-osmotic microbial injection,” Proceeding of the Twenty-sixth, 2016.
7. DeJong, J. T., Fritzges, M. B. and Nusslein K., “Microbially induced cementation to control sand response to undrained shear,” Journal of Geotechnical and Geoenvironmental Engineering, vol. 132, 2006, pp. 1381-1392.
8. Fischer, S. S., Galinat, K. J. and Bang, S. S., ”Microbiological precipitation of CaCO_3,” Soil Biology and Biochemistry, vol. 31, 1999, pp.1563-1571.
9. Gray, D. H., Schlocker, J., ”Electro chemical alteration of clay soils,” Clays and Clays Minerals, vol. 17, 1969, pp. 309-322.
10.Gurbuz, A., Sari, Y. D. and Yuksekdag, Z. N., ” Bacteria-induced cementation in sandy soils, ” Journal of Geomicrobiology, vol. 32, 2015, pp. 853-859.
11. Heuser, M., Spagnoli, G., Leroy, P., Klitzsch, N. and Stanjek, H., ” Electro-osmotic flow in clays and its potential for reducing clogging in mechanical tunnel driving, ” Bull Eng Geol Environ, vol. 71, 2012, pp.721-733.
12. Jayasekera, S., ” Electrokinetics to modify strength characteristics of soft clayey soils: A laboratory based investigation, ” Eletrochemica Acta, vol. 181, 2015, pp. 39-47.
13. Kroll, R. G., Alkalophiles. In: Edwards,C. (Ed.), Microbiology of Extreme Environments. McGraw-Hill, New York, 1990, pp. 55-92.
14. Kilic, R., Kucukali, O. and Ulamis, K., ”Stabilization of high plasticity clay with lime and gypsum(Ankara, Turkey),” Bull Eng Geol Environ, vol. 75, 2016, pp. 735-744.
15. Larson, A. D. and Kallio, R. E., ”Purification and properties of bacterial urease, 1953.
16. LU, W. J., QIAN, C. X. and WANG, R. X., ” Study on soil solidification based on microbiological precipitation of CaCO_3,” Technological Sciences, vol. 53, 2010, pp. 2372-2377.
17. Mitchell, J. K., ”Fundamentals of Soil Behavior,” John Wiley & Sons Inc., 2^nd edition, 1993.
18. Mitchell, J. K. and Santamarian, C. J., “Biological considerations in geotechnical engineering,” Journal of Geotechnical and Geoenvironmental Engineering, 2005, pp. 1222-1233.
19. Muhmed, A. and Wanatowski, D., ” Effect of Lime Stabilisation on the Strength and Microstructure,” Journal of Mechanical and Civil Engineering, vol. 6, 2013, pp.87-94.
20. Ou, C. T., Chien, S. C. and Lee, T. Y. ” Development of a Suitable Operation Procedure for Electroosmotic Chemical Soil Improvement,” Journal of Geotechnical and Geoenvironmental Engineering, vol.139, 2013, pp. 993-1000.
21. Ou, C. Y., Chien, S. C., Yang, C. C. and Chen, C. T., ” Mechanism of soil cementation by electroosmotic chemical treatment,” Applied Clay Science, vol. 104, 2015, pp. 135-142.
22. Ou, C. Y., Chien, S. C. and Liu, R. H., ”A study of the effects of electrode spacing on the cementation region for electro-osmotic chemical treatment,” Applied Clay Science, vol.104, 2015, pp. 168-181.
23. Peng, J., Ye, H. and Alshawabkeh, A. N., ” Soil improvement by electroosmotic grouting of saline solutions with vacuum drainage at the cathode,” Applied Clay Science, vol. 114, 2015, pp. 53-60.
24. Qin, J., Sun, X., Liu, Y., Berhold, T., Harms, H. and Wick, L. Y., ” Electrokinetic control of bacterial deposition and transport,” Environmental Science and Technology, vol. 49, 2015, pp. 5663-5671.
25. Sugimoto Daisuke and Kuwano Reiko,“Trial test and evaluation of microbially induced cementation in sand,”生產研究速報 (日本),61卷4號,2009,pp. 682-685。
26. Tittelboom, K. V., Belie, N. D., Muynck, W. D. and Verstraete, W., ”Use of bacteria to repair cracks in concrete,” Cement and Concrete Research, vol. 40, 2010, pp. 157-166.
27. Wiktor, V. and Jonkers, H. M., ” Quantification of crack-healing in novel bacteria-based self-healing concrete,” Cement and Concrete Composision, vol. 33, 2011, pp. 763-770.
28. 中興大學,細菌應用於混凝土修復及淤泥固結之開發研究,經濟部水利署,2009。
29. 李宗燁,電滲透化學灌漿對高嶺土改良強度最佳化之研究,碩士論文,國立台灣科技大學,2010。
30. 卓雨璇,微生物式之碳酸鈣膠結效應對粒狀土壤地質改良之研探,碩士論文,國立台灣大學土木工程系,台北,2011。
31. 張家嘉,以固定電流方式對高嶺土進行電滲透化學灌漿之行為探討,碩士論文,國立台灣科技大學,2009。
32. 楊青晟,電滲透化學灌漿正極及負極附近土壤膠結機制之研究,碩士論文,國立台灣科技大學,2012。
33. 潘鉉衡,電滲透化學灌漿對高嶺土強度全面改良之研究,碩士論文,國立台灣科技大學,2012。
34. 劉人豪,電滲透化學灌漿灌入氯化鈣對高嶺土負極改良範圍之研究,碩士論文,國立台灣科技大學,2011。
35. 陸嘉,電滲法運用於地下鑽掘包泥問題之可行性探討,碩士論文,國立台北科技大學土木工程系,台北,2013。
論文全文使用權限:不同意授權