現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:集水區水梯田地表下水流況及地下水補注分析-現地實驗與模擬 [以論文名稱查詢館藏系統]
論文英文名稱:Subsurface Water Movement and Groundwater Recharge of Terraced Paddy Fields in a Watershed-Experimental and Simulation studies [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木工程系土木與防災碩士班
畢業學年度:105
畢業學期:第二學期
出版年度:106
中文姓名:郭功偉
英文姓名:Kung-Wei Kuo
研究生學號:104428071
學位類別:碩士
語文別:中文
口試日期:2017/07/14
論文頁數:73
指導教授中文名:陳世楷
口試委員中文名:陳世楷;王聖瑋;張誠信
中文關鍵詞:水梯田入滲優勢流FEMWATER
英文關鍵詞:terrace paddy fieldinfiltrationpreferential flowFEMWATER
論文中文摘要:為了探討山區水梯田入滲補注功能,並瞭解田埂邊坡滲漏等優勢流機制,本研究於新北市貢寮區水梯田進行現地試驗,包括減水深試驗、雙環入滲試驗、土壤飽和度調查、土壤成分調查及土壤張力計試驗,再應用水收支平衡理論分析水梯田地下水補注之機制。將現地實驗及現地調查等相關數據分析整理後,採用FEMWATER三維地下水模式,建立模式模型並將現地實驗結果及參數應用於模式中,經過驗證及參數調整後模擬四種不同情境下入滲及流況,以探討水梯田地下水補注、深層滲漏及流況分析。情境一為現地情境模擬,情境二為乾溼邊界模擬,情境三為全飽和模擬,情境四為降雨模擬,將四種情境入滲及流況模擬結果整理後作進一步比較。
模擬結果顯示以單一田區情境一~情境四的垂直入滲量分別為497m3/yr、420m3/yr、420m3/yr、447m3/yr,側滲量分別為808m3/yr、808m3/yr、785m3/yr、676m3/yr,總入滲涵養量為1305 m3/yr、1228 m3/yr、1205 m3/yr、1123 m3/yr,側滲所佔比例分別為62%、66%、65%及60%,若考慮邊坡滲漏機制,深層滲漏量分別為771m3/yr、694m3/yr、671m3/yr、719m3/yr,量化模擬顯示四種情境入滲涵養及深層滲漏主要仍補注淺層地下水,而各項入滲量及涵養量的結果差異不大。在流況模擬結果中,情境一灌溉水在田邊交界處側滲進入田埂後轉變成垂向滲漏,與下階田區坡腳處側滲匯流後滲漏至淺層地下水,情境二乾溼田區灌溉水在田埂垂向滲漏至下階田區時,因旱田土壤負壓的吸引力使灌溉水側向流進下階田區內,情境三全飽和模擬初期流況在田埂坡腳處並非向下滲漏至淺層地下水,而是會流回坡腳交界處,於田邊坡腳交界處產生類似湧水的現象,但在經過長時間模擬穩定後,地表下水流況會逐漸與情境一相似,顯示情境三初期的流況即使發生於真實情境中,流況也會因時間的關係而趨近於情境一,情境四天然降雨模擬流況在不同時間其結果與情境一相似。綜合本研究模擬結果貢寮當地年降雨量大,休耕田降雨其入滲補注可達湛水狀態之93%,若將當地休耕田予以適當維護亦可作為天然補注池,以確保其涵養水資源功能,供未來水梯田保育及水資源經營管理政策擬定及相關研究之參考。
論文英文摘要:The purpose of this research is to study the infiltration characteristic, the subsurface flow pattern, and the related preferential flow mechanisms of terrace paddy fields in the mountain areas. The experimental terrace paddy field is located in Gongliao District, New Taipei City. The in-situ tests including water requirement rate, double ring experiment, and soil water distribution. The soil textures and hydraulic conductivity is analysed in the laboratory. Based on the field and laboratory data obtained from experimental paddy field, a three-dimensional groundwater model FEMWATER was adopted to simulate subsurface water movement in the terraced paddy field subjected to various soil/water conditions for two adjacent upper and lower terraced blocks. The simulation scenarios including 1) with constant ponding water in both upper and lower blocks, 2) with constant ponding water only in upper block but remained dry condition in lower block, 3) with constant ponding water in both upper and lower blocks, and setting all soil layers to be saturated condition, and 4) with varied ponding water from rainfall were used to simulate the 3D subsurface water flow conditions. Simulation results showed that lateral seepage play an important role in subsurface water flow, which occupied 62%, 66%, 65%, and 60% of total field infiltration water in upper block for scenarios 1~4, respectively. For deep percolation, which can be regarded as groundwater recharge, scenario 1 achieved the highest amount, followed by scenario 4, 2, and 3. Simulation results also indicated that when water seepage into the slop embankment from upper block, downward movement will develop to the slop bottom and flow pattern will change in this area for different scenarios. For scenarios 1 and 4, the flow will converge the lateral seepage from lower block and continuously move downward, however, a portion of water from upper slop embankment will laterally flow into the lower block due to the tension force in scenario 2, and piezometric head difference in scenario 3, which will reduce the groundwater recharge amount compared to scenario 1. In addition, after the more long-term simulation, the scenario 3 will turn out to be unsaturated flow condition, which means the setting for all soil layers to be saturated condition was not suitable for real paddy environment in study site. It’s worth noting that groundwater recharge amount in scenario 4 was approximately 93% of scenario 1, which may due to the extremely high annual rainfall (>5,000mm) in the research area. The result of this research can be taken as reference for formulating future policies on the conservation of terraced paddy fields and the management of water resource.
論文目次:目錄
摘要 i
ABSTRACT iii
誌謝 v
目錄 vi
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1前言 1
1.2研究目的 2
1.3論文架構與流程 2
第二章 文獻回顧 4
2.1水田入滲水力特性相關文獻 4
2.2水田垂直入滲及埂間滲漏相關文獻 5
2.2.1垂直入滲相關文獻 5
2.2.2埂間滲漏相關文獻 5
2.3水梯田流況分析相關文獻 6
第三章 材料與方法 9
3.1實驗水稻梯田環境概述 9
3.2水梯田水收支理論 10
3.3現地試驗與調查 12
3.3.1減水深試驗 12
3.3.2雙環入滲試驗 13
3.3.3現地土壤水分飽和度量測 15
3.3.4土壤分層成分調查 16
3.3.5現地土壤水分張力計試驗 19
3.3.6水力傳導係數量測 21
3.4模式介紹 22
3.4.1地下水流控制方程式 22
3.4.2初始條件 24
3.4.3邊界條件 24
3.4.4飽和及非飽和土壤特性 26
第四章 結果與討論 28
4.1現地實驗結果 28
4.1.1減水深試驗結果 28
4.1.2雙環入滲試驗結果 28
4.1.3土壤分層調查結果 29
4.1.4飽和度量測結果 30
4.1.5水力傳導係數量測結果 35
4.1.6土壤水分張力計結果 36
4.2模式建構 37
4.2.1土壤質地條件 37
4.2.2網格建立 38
4.2.3情境模擬 41
4.2.4模式驗證 44
4.3情境模擬結果 44
4.3.1情境一模擬 44
4.3.2情境二模擬 48
4.3.3情境三模擬 51
4.3.4情境四模擬 60
4.4入滲涵養與流況分析綜合討論 62
4.4.1不同情境下入滲涵養分析 62
4.4.2不同情境下模擬流況比較 66
第五章 結論與建議 67
5.1結論 67
5.2建議 68
參考文獻 69
附錄 73
論文參考文獻:參考文獻
1. Bouman, B.A.M., Peng, S., Castaneda, A.R., Visperas, R.M., “Yield and water use of irrigated tropical aerobic rice systems.” Agricultural Water Manage, 74,pp87-105, 2005.
2. Chen S. K. , Chen Y. R. ,Peng Y. H. , “Experimental Study on Soil Erosion in Flooded Terraced Paddy Fields.”,Paddy Water Environ,11,pp433-444,2013a
3. Chen, S.K., Liu, C.W., "Analysis of water movement in the paddy rice fields(I) experimental studies", Journal of Hydrology, vol. 260, pp.206-215., 2002a
4. Chen, S.K., Liu, C.W., Hwang, H.C., "Analysis of water movement in the paddy rice fields (II) simulation studies", Journal of Hydrology, vol. 268, pp.259-271, 2002b
5. Green,W.H. and G.A. Ampt, “Studies on soil physics, 1.The flow of Air and Water Through Soils.”J.Agric.Sci. 4,11-24,1911.
6. Huang, H.C., Liu, C.W., Chen, S.K., Chen, J.S., "Analysis of percolation and seepage through paddy bunds.", Journal of Hydrology, vol. 284, pp.13-25, 2003
7. Horton, R.E. “Surface Runoff Phenomena:Partl,Analysis of the Hydrograph.”,Horton Hydrol. Lab. Pub. 101. Ann Arbor, Mi:Edwards Bros,1933.
8. Huggins, L.F. and E.J. Monke, “The Mathematical Simulation of the Hydrology of Small Watersheds.”, Tech. Rept. 1, Purdue University Water Resource Center, Lafayette, IN, Aug, 1966.
9. Hamada, H., Komae, T., “Analysis of recharge by paddy field irrigation using 222Rn concentration in groundwater as indicator.” Journal of Hydrol. 205, pp92-100, 1998.
10. Hafeez, M. M., Bouman, B.A.M., Van de Giesen, N., Vlek, P., “Scale effects on water use and water productivity in a rice-based irrigation system (UPRIIS) in the Philippines.” Agricultural Water Manage, 92, pp81-89, 2007.
11. Janssen M., Lennartz B., “Horizontal and vertical water and solute fluxes in paddy rice fields.”, Soil Till. Res. 94,pp133-141., 2007
12. Janssen M., Lennartz B.,“Water losses through paddy bunds: Methods, experimental data, and simulation studies.”, Journal of Hydrology, pp142-153, 2009
13. Kukal S.S., Aggarwal G.C., “Percolation losses of water in relation to puddling intensity and depth in a sandy loam rice (Oryza sativa) field.”, Agricultural Water Manage.,57,pp49-59., 2002
14. Liu, C.W., Hung, H.C., Chen, S.K., Kuo, Y.M., "Subsurface return flow and groundwater recharge of terrace fields in northern Taiwan.", Journal of the American Water Resources Association, vol. 40, no. 3, pp.603-614., 2004
15. Liu, C.W., Chen, S.K., Jou, S.W., Kuo, S.F., "Estimation of the infiltration rate of a paddy field in Yun-Lin, Taiwan," Agriculture Systems, vol. 68, pp.41-54., 2001
16. Lin L.,Zhang Z., Manon J., Bernd L., “Infiltration properties of paddy fields under intermittent irrigation.”, Paddy Water Environ, 2013
17. Manon Janssen., Bernd Lennartz., “Water losses through paddy bunds: Methods, experimental data, and simulation studies.”, Journal of Hydrology, Volume 369, Issue 1, pp.142-153., 2009
18. Painuli, D. K., Woodhead, T., Pagliai, M., “Effective use of energy and water in rice–soil puddling.” Soil Till. Res. 12, pp149-161, 1988.
19. Richards, “Capillary conduction of liquids through porous mediums.” Physics, 1:pp318-333, 1931
20. Takeo Onishi , Kimihito Nakamura , Haruhiko Horino , Toru Adachi , Toru Mitsuno ,“Evaluation of the denitrification rate of terraced paddy fields”, Journal of Hydrology, vol. 436, pp.111-119, 2012
21. Takagi, S., "Analysis of the vertical downward flow of water through a two-layered soil.," Soil Science, vol. 90, pp.98-103., 1960
22. Tsubo M., Fukai S., Tuong T. P., Ouk M.,“A water balance model for rainfed lowland rice fields emphasising lateral water movement within a toposequence.”, Ecol. Mod. 204,pp503-515., 2007
23. Tuong, T. P., Wopereis, M.C.S., Marquez, J. A., Kropff, M. J., “Mechanisms and Control of Percolation Losses in Irrigated Puddled Rice Fields.” Soil Science Society of America Journal-SSSAJ, Vol. 58, No. 6, pp. 1794-1803, 1994.
24. Van Genuchten, M. T., "A closed-form equation for predicting the hydraulic conductivity of unsaturated soils," Soil Science Society of America, vol. 44, pp.892-898., 1980
25. Walker S. H., Rushton K. R., “Verification of lateral percolation losses from irrigated rice fields by a numerical model.”, J. Hydrol, pp335-351.,1984
26. Wopereis, M. C. S., Bouman, B. A. M., Kropff, M. J., Tenberge H. F. M. and Maligaya, A. R., “Water Use Efficiency of Flooded Rice Fields I. Validation of the Soil-Water Balance Model SAWAH,” Agricultural Water Management, Vol. 26, pp. 277-289, 1994.
27. Wopereis, M.C.S. et al., “Hydraulic resistance in puddled rice soils:measurement and effects on water movement.” Soil Tillage Res., 24:pp199, 1992.
28. Walker S. H., Rushton K. R., “Water losses through the bunds of irrigated rice fields interpreted through an analogue model.” Agricultural Water Manage, 11, 1986, pp59-73, 1986.
29. Wickham, T. H., Singh, V. P., “Water movement through wet soils.” In: Soils and Rice. International Rice Research Institute, Los Banos, Philippines, pp 337-357, 1978.
30. 丁澈士等,農業灌溉用水對地下水補注影響之調查評估(I):水稻灌溉部份研究,財團法人曹公農業水利研究發展基金會,1997。
31. 行政院農業委員會,梯田對地下水涵養補注及水土保持之綜合評估,2004。
32. 吳瑞賢,水稻田轉作之可逆性,推廣水田生態環境保護及地下水涵養補注,行政院農業委員會,2003。
33. 李光中,鄉村地景保育的新思維-里山倡議,台灣林業期刊,37卷,第3期,2011a,pp59-64。
34. 施鈞程,台灣森林集水區之蒸發散量推估,碩士論文,國立中興大學水土保持學系,台中,2003。
35. 林子喬,不同灌溉制度對地下水補注之影響評估,碩士論文,國立臺北科技大學,臺北,2013。
36. 張格綸,應用蒸發皿係數推估地區蒸發散量之研究,碩士論文,國立成功大學,臺中,2008。
37. 陳豐文、劉振宇,「水收支平衡應用於水田灌溉用水消耗特性之評估」,農業工程學報,第59卷,第1期,2013,第77-98頁。
38. 陳世楷、劉振宇,「水田滲漏/側滲之數值模擬」,農業工程學報,第46卷,第2期,2000,第1-23頁。
39. 陳慣楹,水梯田入滲補注地下水之機制與量化研究-以貢寮地區為例, 國立台北科技大學碩士論文,2014。
40. 劉振宇、鄭世尉,「台灣地區水田對地下水補注量之推估及其經濟效益」,農業工程研討會,2005。
41. 蔡玉娟,土壤污染整治規範對土壤污染整治技術發展之影響-以日本土壤污染對策法之實施經驗為例,經社法制論叢,45,pp137-167,2010。
42. 蔡誠斌,應用三維地下水模式FEMWATER評估SRI與傳統灌溉制度之地下水補注,碩士論文,國立臺北科技大學,臺北,2014。
43. 簡傳彬,水稻田入滲及回歸水之試驗及模擬,博士論文,國立中央大學,中壢,1999。
論文全文使用權限:同意授權於2020-08-23起公開