現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:中、大型風力電塔結構體損壞機制探討與補強之研究 [以論文名稱查詢館藏系統]
論文英文名稱:Medium and Large Wind Power Tower Structure Research Mechanism and Reinforcement of Damage [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木工程系土木與防災碩士班
畢業學年度:105
畢業學期:第二學期
中文姓名:高偉鳴
英文姓名:Wei-Ming Kao
研究生學號:104428020
學位類別:碩士
口試日期:2017/07/28
指導教授中文名:李有豐
口試委員中文名:陳清泉;徐增興;王昱凱
中文關鍵詞:風力發電電塔碳纖維纖維補強再生能源纖維強化高分子複合材料
英文關鍵詞:wind power towercarbon fiberfiber reinforcedrenewable energyfiber reinforced polymer composite material
論文中文摘要:本研究針對既有受損的風力電塔進行破壞模式之蒐集、探討與彙整。材料採質量輕、強度高與耐候性佳,且可設計性之碳纖維強化高分子複合材料。再以碳纖維複合材料與搭配補強設計的方式,進行受損風力電塔補強。並透過小型縮尺實驗的進行,一共規劃了四種不同碳纖維方向的補強方式,透過側推加載該縮尺試體,來驗證CFRP材料與補強方式之成效,實驗發現於第一層補強,30度與90+0度之試體有較好之圍束力而使補強貼片不會有脫層之現象,而有較好之圍束力才可確保有效的補強效果,第二層補強後圍束力增加,而各試體破壞位置皆移置固定端,證明圍束力提升後補強方圍有效。並將實驗所得的材料參數,配搭補強結構型式之設計,進行受損風力電塔補強後力學計算。最後透過本研究所得之成果,針對風力電塔結構之不同受損型式,提出可行的補強方案,供後續相關研究及實務界使用。
論文英文摘要:This study is aimed at collecting, discussing and assembling the damage modes of damaged towers. Material mining light weight, high strength and good weather resistance, and the design of the carbon fiber reinforced polymer composite materials. And then with carbon fiber composite materials and with reinforcement design approach, the damage to the wind tower reinforcement. And through the small scale experiment, a total of four different carbon fiber direction of the reinforcement method, through the side push the scale test body to verify the effectiveness of CFRP material and reinforcement methods, the experiment found in the first layer of reinforcement, 30 degrees and 90 + 0 degrees of the test body has a better edge of the reinforcement patch will not have the phenomenon of delamination, and a better beam to ensure effective reinforcement effect, the second layer of reinforced rear Force increases, and the destruction of the test position are fixed to the fixed end, to prove that the reinforcement after the reinforcement side effective. And the experimental data obtained from the parameters of the structure of the structure, the damage to the wind tower after the mechanical calculation. Finally, through the results obtained in this study, a feasible reinforcement scheme is proposed for the different damage types of wind power tower structure for later follow-up research and practical use.
論文目次:摘要 I
ABSTRACT II
誌謝 III
目錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
1.1前言 1
1.2研究目的 5
第二章 文獻回顧 13
2.1風力發電發展概況 13
2.2風力設計 16
2.3風力發電機塔架分析與結構型式探討 19
2.4 FRP相關之研究 35
第三章 實驗規劃與材料介紹 38
3.1縮尺比例鋼管側推實驗 38
3.1.1實驗方法 40
3.1.2縮尺比例鋼管側推實驗之架設方式 41
3.2 FRP材料特性 43
3.2.1 常見纖維種類 43
3.2.2 環氧樹脂 45
3.3實驗試體規劃 46
3.4縮尺比例側推鋼管試體編號與介紹 47
3.4.1縮尺比例鋼管試體製作 47
第四章 實驗結果 50
4.1縮尺比例鋼管側推實驗之結果與比較 50
4.1.1補強一層縮尺比例鋼管側推實驗之結果 50
4.1.2補強兩層縮尺比例鋼管側推實驗之結果 62
4.2小結 73
第五章 實驗結果與理論驗證 74
5.1 未補強鋼管計算與實驗值之驗證 74
5.1.1 碳鋼之降伏應力計算 77
5.1.2 鋼管(切割)設計斷面試體之彎矩計算 77
5.1.3 未補強鋼管計算與實驗值之整理 78
5.2 補強一層鋼管計算與實驗值之驗證 78
5.2.1 SF36C30試體之彎矩計算 82
5.2.2 SF36C45試體之彎矩計算 83
5.2.3 SF36C60試體之彎矩計算 85
5.2.4 SF36C90試體之彎矩計算 86
5.2.5 補強一層試體計算與實驗之彎矩整理 87
5.3 補強兩層試體計算與實驗值之驗證 88
5.3.1 SF36C302試體之彎矩計算 89
5.3.2 SF36C452試體之彎矩計算 91
5.3.3 SF36C602試體之彎矩計算 92
5.3.4 SF36C902試體之彎矩計算 93
5.3.5 補強兩層試體計算與實驗之彎矩整理 95
5.4小結 95
第六章 結論與建議 97
6.1結論 97
6.2建議 98
參考文獻 99
論文參考文獻:1. Bazeos, N., Hatzigeorgiou, G.D., Hondros, I.D., Karamaneas, H., Karabalis, D. L., and Beskos, D.E., “Static, Seismic and Stability Analyses of a Prototype Wind Turbine Steel Tower”, Engineering Structures, Vol. 24, pp. 1015-1025 (2002).
2. Chen, X., Xu, J. Z., “Structural Failure Analysis of Wind Turbines Impacted by Super Typhoon Usagi” Engineering Failure Analysis, Vol. 60, pp. 391-404 (2016).
3. Chen, X., Li, C. F., and Xu, J. Z., “Failure Investigation on a Coastal Wind Farm Damaged by Super Typhoon: A Forensic Engineering Study” J. Wind Eng. Ind. Aerodynamics, Vol 147, pp. 132-142 (2015).
4. Chou, J. S., and Tu, W. T., “Failure Analysis and Risk Management of a Collapsed Large Wind Turbine Tower” Engineering Failure Analysis, Vol. 18, pp. 295-313 (2011).
5. Fujiyama, C., Yonetsu, K., Maeshima, T., and Koda, Y., “Identifiable Stress State of Wind Turbine Tower Foundation System Based on Field Measurement and FE Analysis”, Procedia Engineering, Vol. 95, pp. 279-289 (2014).
6. Hu, Y., Baniotopoulos, C., and Yang, J., “Effect of Internal Stiffening Rings and Wall Thickness on the Structural Response of Steel Wind Turbine Towers”, Engineering Structure, Vol. 81, pp. 148-161 (2014).
7. Kim, S. W., Han, T. H., and Hong, H. M., “Standard Section Design of ICH RC Tower Supporting 5.0 MW Wind Turbine”, ASEA-SEC-3 The Third Australasia and South-East Asia Structural Engineering and Construction Conference ISEC Kuching, Sarawak, Malaysia, Oct 31-Nov 4 (2016a).
8. Kim, S. W., Han, T. H., and Hong, H. M., “Standard Section Design of FRP DSCT Tower Supporting 3 MW Wind Turbine”, ASEA-SEC-3 The Third Australasia and South-East Asia Structural Engineering and Construction Conference ISEC Kuching, Sarawak, Malaysia, Oct 31-Nov 4 (2016b).
9. Liu, W. Y., “The Vibration Analysis of Wind Turbine Blade Cabin Tower Coupling System”, Engineering Structure, Vol. 56, pp. 954-957 (2013).
10. Li, Y. F., and Fang, T. S., “A Constitutive Model for Concrete Confined by Steel Reinforcement and Carbon Fiber Reinforced Plastic Sheet”, Structural Engineering and Mechanics, Vol. 18, No. 1, pp. 21-40 (2004).
11. Li, Y. F., Lin, C. T., and Sung, Y. Y., “A Constitutive Model for Concrete Confined with Carbon Fiber Reinforced Plastics”, Mechanics of Materials, Vol. 35, pp. 603-619 (2003).
12. Michael, M., and Sebastian, S., “Design Optimization of Wind Turbine Support Structures”, Journal of Ocean and Wind Energy, Vol. 1, No. 1, pp. 12-22 (2014).
13. Matos, R. M., Rebelo, C., and Pinto, P. L., “Steel Towers for Wind Turbines”, University of Coimbra, Coimbra (2016).
14. Negm, H. M., and Maalawi, K. Y., “Structural Design Optimization of Wind Turbine Tower”, Computers & Structures, Vol. 74, Issue 6, pp. 649-666 (2000).
15. Quilligan, A., O’Connor, A., and Pakrashi, V., “Fragility Analysis of Steel and Concrete Wind Turbine Tower”, Engineering Structure, Vol. 36, pp. 270-282 (2012).
16. Rebelo, C., Moura, A., Gervasio, H., Veljkovic, and Simoes da Silva, L., “Comparative Life Cycle Assessment of Tubular Wind Tower and Foundation-Part 1: Structure Design”, Engineering Structure, Vol. 74, pp. 283-291 (2014).
17. Sawyer, S., Zervos, A., “Global Wind Report Annual Market Update 2009”, GWEC (2010).
18. Sawyer, S., Rave, K., and Horhammer, K., “Global Wind Report Annual Market Update 2014”, GWEC (2015).
19. Sawyer, S., Rave, K., and Birol, F., “Global Wind Report Annual Market Update 2015”, GWEC (2016).
20. Umar, A.B., and Ishihara, T., “Seismic Load Evaluation of Wind Turbine Support Structures Considering Low Structural Damping and Soil Structure Interaction”, EWEA (2012).
21. Veljkovic, M., and Husson, W, “High-Strength Wind Turbine Steel Towers”, Elforsk Report (2009).
22. 詹益梁、王錦華,“再生能源風力發電塔架結構設計之探討”,資源與環境學術研討會(2015)。
23. 溫珮伶、林師模、林晉勗、馮君強、葛復光,“臺灣陸域風力發電之成本效益分析”,中央研究院經濟研究所,第四十五卷,第一期,第41-76頁(2014)。
24. 陳彥均,“玻璃纖維強化高分子複合材料I型梁-版系統力學行為之研究”,臺北:碩士論文,國立臺北科技大學土木與防災技術研究所(2012)。
25. 吳嘉濠,“FRP橋面版構件於三點抗彎測試與有限元素分析之研究”,台北:碩士論文,國立臺北科技大學土木與防災技術研究所(2012)。
26. 李有豐,“FRP複合材料於土木與建築工程之應用”,台灣區複合材料工業同業公會,台北(2012)。
27. 周瑞生、涂莞庭、陳正誠、陳瑞華、楊維和,“風力發電機塔架受颱風侵襲倒塌致災原因之探討”,營建管理季刊,第82期,第1-17頁(2010.3)。
28. 王朝勝、黃東勝、鄒富順、黃方林,“風力機塔架模態分析及應用”,電力學報,第24卷,第6期,第463-466頁(2009.12)。
29. 宋博,“ANSYS在發電機塔架動力分析中的應用”,廣州航海高等專科學校學報,第17卷,第2期,第28-30頁(2009.6)。
30. 陳清嚴、張嘉文與江榮城,“風力廠址規劃與環境影響評估”,電機月刊第十六卷,第七期(2006)。
31. 李天河、李有豐、施邦築,“應用FRP複合材料補強鋼筋混凝土結構物—碳纖維貼片補強施工案例介紹與探討”,土木技術月刊,第17期,第109-116頁(1999.7)。
32. 李有豐、施邦築、彭添富、李秉乾,“混凝土結構物維修補強方法介紹”,土木技術月刊,第5期,第28-52頁(1998.7)。
論文全文使用權限:同意授權於2017-08-23起公開