現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:結構實驗之即時影像分析與聯網技術 [以論文名稱查詢館藏系統]
論文英文名稱:Online Networked Image Analysis on Structural Analysis [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:工程科技研究所
畢業學年度:105
畢業學期:第二學期
出版年度:106
中文姓名:楊仲民
英文姓名:Chung-Ming Yang
研究生學號:100679002
學位類別:博士
語文別:英文
論文頁數:114
指導教授中文名:楊元森
口試委員中文名:陳俊杉;張陽郎;曹文光;王孔君;楊元森
中文關鍵詞:影像分析線上分析分散式系統物聯網結構實驗
英文關鍵詞:Image analysisOnline analysisDistributed systemInternet of ThingsImPro Vision NetStructural experiments.
論文中文摘要:隨著結構實驗越來越複雜,為了減少感測器的耗損、獲得更多的實驗資訊以及提高實驗過程的安全性,越來越多的研究人員開始在結構實驗中應用影像分析技術。然而複雜的影像分析通常是在實驗結束之後進行的,無法在實驗的過程中立即自動化的進行分析。本研究提出一套可用於開發即時影像量測系統所需程式的軟體設計與實作,所提出的軟體設計可以提供自動化的控制並藉由分散式運算提升量測系統效能。另外,考慮到行動裝置和物聯網技術的快速發展,在軟體設計與實作上也納入物聯網技術的應用並將軟體實作於行動裝置上。最後,本研究透過橋梁模型實驗證明所提出的軟體設計和實作的可用性。
論文英文摘要:As the structural experiments are getting more complicated, image analysis has started to be employed by researchers to not only reduce the sensor loss and acquire more information of experiments, but also reduce the labors and improve the safety. However, image analysis is usually carried out offline, required a few manual operations and hours or days to run before the results are presented. It is not capable of responding results immediately for instant experimental controlling judgments. This research proposes software design and implementation which can be used to develop applications needed by online image-based measurement system. The proposed software design and implementation enable better automation and higher computing performance through the concept of distributed computing for online image analysis. In addition, considering the recent rapid advancement of camera equipped mobile devices and Internet of Things techniques, this research also introduces how camera equipped mobile devices and Internet of Things techniques are employed in this approach. The usability of the proposed software design and implementation is demonstrated through the small bridge model experiments.
論文目次:摘 要 i
ABSTRACT ii
誌 謝 iii
TABLE OF CONTENTS iv
LIST OF TABLES vii
LIST OF FIGURES viii
Chapter 1 INTRODUCTION 1
1.1 Background 1
1.2 Objective and Scope 3
1.3 Organization 4
Chapter 2 PAST DEVELOPMENT AND CHALLENGES 5
2.1 ImPro 5
2.1.1 RC Collapse Shake-Table Tests 5
2.1.2 Guan-Miao Elementary School In-Situ Pushover Tests 8
2.1.3 Large-Scale RC-Wall Experiment 9
2.1.4 The Niu-dou Bridge In-situ Test 11
2.1.5 Crack Detection Using Single Android Camera 17
2.1.6 Wind Turbine Experiment 18
2.1.7 RCCV Experiment 20
2.1.8 Summary 22
2.2 ISEE Platform 22
2.2.1 Camera Module 22
2.2.2 Network Communication and Connectivity 24
2.3 Image-Based Measurement System 26
2.3.1 Industrial Camera 26
2.3.2 Consumer Camera 29
2.3.3 IP Camera 30
2.3.4 Summary 31
2.4 Advancement of Techniques 32
2.4.1 Mobile Devices 32
2.4.2 Internet of Things 33
2.5 Challenges 35
Chapter 3 PROBLEMS AND SOFTWARE SOLUTIONS 37
3.1 Problems 37
3.1.1 Needs for Remote and Programmable Camera Control 38
3.1.2 Needs for Image Acquisition via Network 40
3.1.3 Networking for Large and Complex Structural Experiments 46
3.1.4 Needs for Mobile Device Computing 50
3.2 Software Solutions 50
3.2.1 Space, Node and Application 52
3.2.2 Channel, ChannelObserver and Data 54
3.2.3 Interface 59
3.2.4 Process 61
3.2.5 Software Architecture 62
3.3 Scenarios 64
3.3.1 Scenario I: Single Site 3D Displacement Measurement 64
3.3.2 Scenario II: Networked Experiment 65
3.3.3 Scenario III: External Signal Triggered 67
3.3.4 Scenario IV: Dynamic Scheduling (Distributed) Computing 68
Chapter 4 PROGRAMS AND EXPERIMENTS 70
4.1 Programs 70
4.1.1 ImPro Camera 70
4.1.2 ImPro DataViewer 75
4.1.3 ImPro Viewer 78
4.1.4 ImPro Calibrator 79
4.1.5 ImPro Analyzer 80
4.1.6 ImPro Relay 82
4.1.7 ImPro Configurator 82
4.2 Experiments 83
4.2.1 Case I: Stereo Calibration with Camera Vibration Monitoring 86
4.2.2 Case II: Online Displacement Measurement with Camera Vibration Monitoring 89
4.2.3 Case III: Mobile Computing (With Vibration Recording) 95
4.2.4 Case IV: A Sophisticated Scenario 101
Chapter 5 CONCLUSIONS AND FUTURE WORKS 107
5.1 Conclusions 107
5.2 Future Works 108
References 109
論文參考文獻:1. CPAMI. Building Seismic Design Specifications and Commentary. Construction and Planning Agency Ministry of Interior. 2011.
2. Park KT, Kim SH, Park HS, Lee KW. The determination of bridge displacement using measured acceleration. Engineering Structures. 2005;27(3):371-8.
3. Gentile C, Bernardini G. An interferometric radar for non-contact measurement of deflections on civil engineering structures: laboratory and full-scale tests. Structure and Infrastructure Engineering. 2010;6(5):521-34.
4. Park HS, Lee HM, Adeli H, Lee I. A new approach for health monitoring of structures: terrestrial laser scanning. Computer‐Aided Civil and Infrastructure Engineering. 2007;22(1):19-30.
5. Fukuda Y, Feng MQ, Shinozuka M. Cost‐effective vision‐based system for monitoring dynamic response of civil engineering structures. Structural Control and Health Monitoring. 2010;17(8):918-36.
6. Fukuda Y, Feng MQ, Narita Y, Kaneko SI, Tanaka T. Vision-based displacement sensor for monitoring dynamic response using robust object search algorithm. IEEE Sensors Journal. 2013;13(12):4725-32.
7. Ribeiro D, Calçada R, Ferreira J, Martins T. Non-contact measurement of the dynamic displacement of railway bridges using an advanced video-based system. Engineering Structures. 2014;75:164-80.
8. Lee JH, Ho HN, Shinozuka M, Lee JJ. An advanced vision-based system for real-time displacement measurement of high-rise buildings. Smart Materials and Structures. 2012;21(12):125019.
9. Koch C, Paal SG, Rashidi A, Zhu Z, König M, Brilakis I. Achievements and challenges in machine vision-based inspection of large concrete structures. Advances in Structural Engineering. 2014;17(3):303-18.
10. Cheng C, Kawaguchi KI. A preliminary study on the response of steel structures using surveillance camera image with vision-based method during the Great East Japan Earthquake. Measurement. 2015;62:142-8.
11. Yang YS, Chen HM, Lee CS, Jien YH, Hu ZH, Lai WZ. ImPro Stereo, https://sites.google.com/site/improstereoen/; [accessed Sep 2016]
12. Tsai KC, Yang YS, Wang KJ, Wang SJ, Lin ML, Weng YT, Chen PC, Cheng WC, Chuang MC, Lin BZ, Lau DT, Chang YY. Network platform for structural experiment and analysis (ii): framework, protocol, software development for a Taiwan-Canada collaborative pseudo-dynamic experiment. Technical report NCREE-07-018, National Center for Research on Earthquake Engineering, Taipei, Taiwan. 2007.
13. Yang YS, Wu CL, Loh CH, Yang CM, Tu WH, Shih MH, Tung SH, Caperan P. Preliminary study on image-based measurement. Technical report NCREE 08-013, National Center for Research on Earthquake Engineering, Taipei, Taiwan. 2005.
14. Wu CL, Yang YS, Loh CH. Dynamic gravity load collapse of non-ductile RC frames I: experimental approach. Proceedings of the 100th Anniversary Earthquake Conference Commemorating the 1906 San Francisco Earthquake. San Francisco, California, USA. 18-21 Apr 2006.
15. Intel Corporation, Willow Garage, Itsee. The OpenCV Library. http://opencv.org/; [accessed Oct 2016]
16. Yang YS, Wu CL, Tu WH, Yang CM, Chen AC, Loh CH. Preliminary study on image-based measurement and ImPro package. 2006 NCREE Research Programs and Accomplishments. National Center for Research on Earthquake Engineering, Taipei, Taiwan. 2006.
17. Yang YS, Shih MH, Tung SH. Image-based measurement on Guan-Miao elementary school in-situ schoolhouse pushover tests. 2007 NCREE Research Programs and Accomplishments. National Center for Research on Earthquake Engineering, Taipei, Taiwan. 2007.
18. Bouguet JY. Camera calibration toolbox for Matlab. http://www.vision.caltech.edu/bouguetj/calib_doc/; [accessed Oct 2016]
19. Yang YS, Huang CW, Wu CL. A simple image‐based strain measurement method for measuring the strain fields in an RC‐wall experiment. Earthquake Engineering & Structural Dynamics. 2012;41(1):1-7.
20. Chen PC. International collaborative test on post-tensioned RC shear wall. NCREE Newsletter. 2008;3(1):6-.
21. Yamaguchi T, Hashimoto S. Fast crack detection method for large-size concrete surface images using percolation-based image processing. Machine Vision and Applications. 2010;21(5):797-809.
22. Manos GC, Theofanous M, Katakalos K. Numerical simulation of the shear behaviour of reinforced concrete rectangular beam specimens with or without FRP-strip shear reinforcement. Advances in Engineering Software. 2014;67:47-56.
23. Wu CL, Kuo WW, Yang YS, Hwang SJ, Elwood KJ, Loh CH, Moehle JP. Collapse of a nonductile concrete frame: shaking table tests. Earthquake Engineering & Structural Dynamics. 2009;38(2):205-24.
24. Yang YS, Yang CM, Hsieh TJ. GPU parallelization of an object-oriented nonlinear dynamic structural analysis platform. Simulation Modelling Practice and Theory. 2014;40:112-21.
25. Yang YS, Yang CM, Huang CW. Thin crack observation in a reinforced concrete bridge pier test using image processing and analysis. Advances in Engineering Software. 2015;83:99-108.
26. Yang YS, Loh CH, Hu TH, Huang YT, Chang CY, Hsiung WY. A case study of measuring vibration of a rotating blade in a reduced-scale wind turbine. Proceedings of the 5th Asia Conference on Earthquake Engineering. Taipei, Taiwan. 16-18 Oct 2014.
27. Basler, Inc. Basler web site. https://www.baslerweb.com/; [accessed Nov 2016]
28. Loh CH, Huang YT, Hsiung WY, Yang YS, Loh KJ. Wind turbine condition monitoring using Rodrigues rotation. Proceedings of the 22th International Conference on Nuclear Engineering. Prague, Czech. 7-11 Jul 2014.
29. Yang YS, Wu CL, Hsu TT. Thin shear crack observation of a cylinder structure test using image analysis. Proceedings of the Instrumentation and Measurement Technology Conference Proceedings (I2MTC) 2016, IEEE International; Taipei, Taiwan. 23-26 May 2016.
30. Automated Imaging Association (AIA). Camera Link Standard. https://www.visiononline.org/vision-standards-details.cfm?type=6; [accessed Jan 2017]
31. Automated Imaging Association (AIA). GigE Vision Standard. https://www.visiononline.org/vision-standards-details.cfm?type=5; [accessed Jan 2017]
32. Japan Industrial Imaging Association (JIIA) CoaXPress Working Group. CoaXPress Standard version 1.1.1. http://jiia.org/en/topics/468/; [accessed Jan 2017]
33. Bloks RH. The IEEE-1394 high speed serial bus. Philips Journal of Research. 1996;50(1):209-16.
34. Automated Imaging Association (AIA). USB3 Vision Standard. https://www.visiononline.org/vision-standards-details.cfm?type=11; [accessed Jan 2017]
35. The European Machine Vision Association (EMVA). GenICam Standard. http://www.emva.org/standards-technology/genicam/; [accessed Jan 2017]
36. Waugh T, Niedermann HU, Rensing MJ, Meissner M. The gPhoto2 manual, http://gphoto.org/doc/manual/; [accessed Jan 2017].
37. ONVIF (Open Network Video Interface Forum). ONVIF Whitepapers. https://www.onvif.org/profiles/whitepapers/; [accessed Jan 2017]
38. PSIA (Physical Security Interoperability Alliance). PSIA Specifications and Documents. https://www.psialliance.org/documents.html; [accessed Jan 2017]
39. IEEE Internet Initiative. Towards a definition of the Internet of Things (IoT). https://iot.ieee.org/images/files/pdf/IEEE_IoT_Towards_Definition_Internet_of_Things_Revision1_27MAY15.pdf; [accessed Jan 2017]
40. OASIS. MQTT Version 3.1.1. http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/csprd02/mqtt-v3.1.1-csprd02.html; [accessed Oct 2016].
41. Stanford-Clark A, Truong HL. MQTT for sensor networks (MQTT-SN) protocol specification. http://mqtt.org/new/wp-content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf; [accessed Oct 2016]
42. Bormann C, Castellani AP, Shelby Z. CoAP: An application protocol for billions of tiny internet nodes. IEEE Internet Computing. 2012;16(2):62-7.
43. Saint-Andre P, Smith K, Tronçon R. XMPP: the definitive guide. OReilly Media, Inc.; 2009.
44. The Object Management Group. An Introduction to DDS and Data-Centric Communication. http://www.omg.org/news/whitepapers/Intro_To_DDS.pdf; [accessed Oct 2016].
45. Finkenzeller K. RFID handbook: fundamentals and applications in contactless smart cards, radio frequency identification and near-field communication. John Wiley & Sons; 2010.
46. Bray J, Sturman CF. Bluetooth 1.1: connect without cables. Pearson Education; 2001.
47. Baronti P, Pillai P, Chook VW, Chessa S, Gotta A, Hu YF. Wireless sensor networks: A survey on the state of the art and the 802.15. 4 and ZigBee standards. Computer communications. 2007;30(7):1655-95.
48. Crow BP, Widjaja I, Kim JG, Sakai PT. IEEE 802.11 wireless local area networks. IEEE Communications magazine. 1997;35(9):116-26.
49. Gozalvez J. New 3GPP standard for IoT [mobile radio]. IEEE Vehicular Technology Magazine. 2016;11(1):14-20.
50. Centenaro M, Vangelista L, Zanella A, Zorzi M. Long-range communications in unlicensed bands: The rising stars in the IoT and smart city scenarios. IEEE Wireless Communications. 2016;23(5):60-7.
51. The Raspberry Pi Foundation. Raspberry Pi documentation. https://www.raspberrypi.org/documentation/; [accessed Mar 2017].
52. BeagleBoard.org Foundation. BeagleBone: open-hardware expandable computer. http://beagleboard.org/Support/bone101; [accessed Mar 2017].
53. Hohpe G, Woolf B. Enterprise integration patterns: Designing, building, and deploying messaging solutions. Addison-Wesley Professional; 2004.
54. Birrell AD, Nelson BJ. Implementing remote procedure calls. ACM Transactions on Computer Systems (TOCS). 1984;2(1):39-59.
55. Oracle Corporation. Java Remote Method Invocation - Distributed Computing for Java. http://www.oracle.com/technetwork/java/javase/tech/index-jsp-138781.html; [accessed Mar 2017].
56. Eugster PT, Felber PA, Guerraoui R, Kermarrec AM. The many faces of publish/subscribe. ACM computing surveys (CSUR). 2003;35(2):114-31.
57. Vlissides J, Helm R, Johnson R, Gamma E. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley; 1995.
58. Alliance A. Alljoyn framework. Linux Foundation Collaborative Projects. https://allseenalliance.org/framework; [April accessed 2016].
59. Dawes B, Niebler E, Rivera R, James D, Prus V, Clow M. Boost C++ Libraries. http://www.boost.org/; [accessed April 2016].
60. The Qt Company. Qt for Application Development. https://www.qt.io/; [accessed April 2016].
61. Bradski G, Kaehler A. Learning OpenCV: Computer vision with the OpenCV library. OReilly Media, Inc.; 2008.
62. Hartley R, Zisserman A. Multiple View Geometry in Computer Vision Second Edition. Cambridge University Press; 2003.
63. Yang CM, Yang YS. Online image analysis for earthquake experiments using mobile device and Internet of Things techniques. Proceedings of the 16th International Conference on Computing in Civil and Building Engineering. Osaka, Japan. 6-8 July 2016.
64. Wang KJ. A Software Framework for Quasi-static Structural Testing. Ph.D. dissertation. National Taiwan University, Taipei, Taiwan. 2011.
論文全文使用權限:同意授權於2017-08-20起公開