現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:農業非點源汙染對地下水水質之影響評估-以彰雲地區水稻田為例 [以論文名稱查詢館藏系統]
論文英文名稱:Impact of Agricultural Nonpoint Source Pollution on Groundwater Quality–Case Study of Paddy Fields in Changhua and Yunlin Area [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木工程系土木與防災碩士班
畢業學年度:105
畢業學期:第二學期
中文姓名:楊臻茹
英文姓名:Jhen-Ru Yang
研究生學號:104428070
學位類別:碩士
指導教授中文名:陳世楷
口試委員中文名:陳世楷;王聖瑋;張誠信
中文關鍵詞:非點源汙染農藥肥料
英文關鍵詞:Nonpoint Source PollutionPesticideChemical Fertilizers
論文中文摘要:農藥及化學肥料內含之化學成分及營養鹽為農業非點源汙染重要來源,合理化施用已成為人體健康及生態環境平衡之重大議題。本研究以臺灣重要農業區-彰雲地區兩處水稻田為研究區域,現地試驗包括田區整體入滲率、雙環垂直入滲率及土壤水份分佈。此外,亦於實驗室分析田區及田埂不同土層K值,藉以判斷水田優勢流機制。並根據環保署土壤及地下水質監測結果,評估水稻耕作期間施用農藥及肥料對環境之影響。藉由驗出農藥品項及濃度,輔以農藥之物化特性及相關指數與環保署土壤、地下水污染監測及管制標準,以判斷水田環境農藥殘存之原因。研究區域不同環境介質,雖未超出環保署制定之監測及管制標準,但仍需進一步追蹤其殘留原因與變化趨勢。分析顯示,雖然田區施用農藥品項及地理位置相差甚多,但4,4-DDT、4,4-DDE、陶斯松、丁基拉草、巴拉刈、托福松為土壤共同驗出項目,而托福松、福瑞松、巴拉刈為地下水共同驗出項目,推測不管自身施用或經環境流佈流入,上述農藥為較易殘留之品項,可能具較高之汙染潛能。在化學氮肥部分,由各項水田湛水、土壤及地下水質氮素濃度分析顯示水田過量施用化學氮肥,加上水田耕作期處於還原狀態,肥料水解為氨氮後,不利硝化作用進行,應為地下水氨氮濃度持續上升之重要原因。水田入滲水力特性現地實驗分析結果則顯示,田區整體入滲率均遠大於田區內之垂直入滲率,田區側滲/埂間垂直滲漏極為明顯,為田區湛水滲漏及汙染物質淋洗之重要途徑。本研究成果可提供作為相關機關單位在進行水田非點源汙染之控制與相關保育措施之參考。
論文英文摘要:The chemical components and nutrient contained in pesticides and chemical fertilizers are the important sources of agricultural non-point source pollution. Rational use of pesticides and chemical fertilizers has become a critical issue for human health and ecological environment balance. This study aims to access the impacts of preferential flow and application of pesticides and chemical fertilizers on ground water quality in paddy field area. As the most important agricultural region, two experimental sites located in Changhua and Yunlin County was selected as the study areas to study the mechanisms of preferential flow. In-situ measurements including total field infiltration, double-ring vertical infiltration, and soil-water distribution was conducted in ponding state, and hydraulic conductivities for various depths within blocks and in the bunds were analyzed in laboratory. The soil and ground water quality monitoring data during the rice growing period obtained from the Environmental Protection Apartment (EPA) was used for the impact assessment resulting from fertilizer application.
Through checking out the details of pesticides and their concentration with physical and chemical characteristic and related indexes, and the soil and groundwater pollution monitoring and control standards from the EPA, we can further determine the reasons why pesticide still remains in paddy field. Although the different environmental media in the study region has not exceeded the monitoring and control standards established by EPA, it still needs to track its causes of residual and trends. Although with different kinds of pesticides applied in the two experimental sites, the analysis shows that 4,4-DDT, 4,4-DDE, chlorpyrifos, butachlor, paraquat, and terbufos can be detected in soils, and terbufos, phorate, and paraquat detected in ground water. It is worth noting that not all the above pesticides detected were applied in the experimental sites, which means some pesticides could move easily from neighborhood farmlands and with high risk to contaminate the soil and ground water. As for chemical nitrogenous fertilizer, various nitrogen concentration analysis for ponding water, soil, and ground water quality analysis showed that when the nitrogen fertilizer is hydrolyzed into ammonia nitrogen in top soil, it is bad not valid for proceeding the nitrification process due to the reducing environment, and this should be the important reason for ammonia nitrogen concentration in ground water keeps raising. In addition, an excessive use of chemical nitrogen fertilizer in paddy field also increase the contamination risk of ground water in this area.
Preferential flow developed near and underneath the bunds has been demonstrated by significant deviations between infiltration rates within the fields measured with infiltration rings, and percolation and seepage losses as derived from a water balance for the experimental field plots in this study. Such preferential flow could accelerate the downward movement of contaminated materials.The result of this study can be provided the relevant agencies as the reference for formulating the control nonpoint sources pollution control measures in the future.
論文目次:摘要 i
ABSTRACT iii
誌謝 vi
目錄 vii
表目錄 x
圖目錄 xiii
第一章 緒論 1
1.1前言 1
1.2研究目的 2
1.3論文架構及流程 2
第二章 文獻回顧 4
2.1台灣農藥使用概況 4
2.2農藥與水土環境汙染 6
2.3台灣肥料使用概況 7
2.3.1氮素於水田環境之轉化作用 8
2.3.2水田氮素之入滲淋洗 9
2.4水田優勢流-埂間滲漏機制及量化研究 10
第三章 材料與方法 12
3.1實驗田區概述 13
3.2田間試驗與土壤/入滲水力特性分析 17
3.2.1水稻田水收支平衡 18
3.2.2減水深試驗 21
3.2.3雙環定水頭試驗 22
3.2.4土壤水分分布觀測 24
3.2.5土壤分層成分分析 25
3.2.6水力傳導係數分析試驗 29
3.3水田環境氧化還原電位量測 32
3.4湛水入滲至地下水之時間推估 33
3.5農藥物化特性與指數分類 34
第四章 結果與討論 37
4.1田區垂直入滲及埂間滲漏/側滲結果 37
4.2土壤水分分布分析結果 39
4.3土壤分層成分分析結果 44
4.4土壤水力傳導係數K值分析 48
4.5湛水入滲至地下水之時間推估結果 50
4.5.1田區內垂直入滲至地下水位時間推估 50
4.5.2 埂間滲漏至地下水位時間推估 53
4.6農藥及施用與驗出 55
4.6.1彰化農藥檢出結果 55
4.6.2雲林農藥檢出結果 59
4.6.3驗出結果與討論 62
4.7水稻田環境氧化還原電位監測 70
4.8肥料施用量分析 72
4.9土壤及地下水氮素濃度分析 73
4.9.1不同深度土壤之氮素變化 73
4.9.2地下水之氮素濃度變化 75
4.9.3地表水之氮素濃度變化 76
4.9.4綜合探討 78
第五章 結論與建議 81
5.1結論 81
5.2建議 82
參考文獻 84
附錄A 彰化田中土壤粒徑分布曲線 91
附錄B雲林西螺土壤粒徑分布曲線 98
附錄C彰化伸港土壤粒徑分布曲線 102
附錄D彰化田中水分飽和度量測結果 108
附錄E 雲林西螺水分飽和度量測結果 112
附錄F 彰化伸港水分飽和度量測結果 113
附錄G 農藥濃度變化 114
論文參考文獻:1. Babiker, I.S., Mohamed M.A., Terao H., Kato K., Ohta K., “Assessment of groundwater contamination by nitrate leaching from intensive vegetable cultivation using geographical information system”, Environment International, 29, 2003, pp.1009-1017.
2. Bidleman, T.F., Leone A.D., “Soil-air exchange of organochlorine pesticides in the Southern United States”, Environment Pollutant Bulletin, 128, 2004, pp.49-57.
3. Bouman, B.A.M., Peng, S., Castaneda, A.R., Visperas, R.M., “Yield and water use of irrigated tropical aerobic rice systems”, Agricultural Water Manage, 74, 2005, pp.87-105.
4. Carsel, R.F., Parrish, R.S., "Developing joint probability distributions of soil-water retention characteristics," Water Resources Research, 24(5), 1988, pp.755-769.
5. Chen, S.K., Liu, C.W., “Analysis of Water Movement in the Paddy Rice Fields, (I) Experimental Study”, Journal of Hydrology, 260, 2002, pp.206-215.
6. Chen, S.K., Liu, C.W., Hwang, H.C., “Analysis of Water Movement in the Paddy Rice Fields, (II) Numerical Simulation”, Journal of Hydrology, 268, 2002, pp.259-271.
7. Chowdary, V.M., Rao, N.H., Sarma, P.B.S., “A coupled soil water and nitrogen balance model for flooded rice fields in India”, Agriculture Ecosystems and Environment, 103, 2004, pp.425–441.
8. Chung, S.O., Kim, H.S., Kim, J.S., “Model development for nutrient loading from paddy rice fields”, Agricultural Water Management, 62, 2003, pp.1–17.
9. Cui, Y.L., Li, Y.H., Lu G.A., Sha, Z.Y., “Nitrogen movement and transformation with different water supply for paddy rice”, Advances in Water Science, 15(3), 2004.
10. Dong, N.M., Brandt, K.K., Sørensen, J., Hung, N.N., Hach, C.V., Tan, P.S., Dalsgaard, T., “Effects of alternating wetting and drying versus continuous flooding on fertilizer nitrogen fate in rice fields in the Mekong Delta, Vietnam”, Soil Biology & Biochemistry, 47, 2012, pp.166-174.
11. Do, T.N., Nishida, K., “A nitrogen cycle model in paddy fields to improve material flow analysis: the Day-Nhue River Basin case study”, Nutrient Cycling in Agroecosystems, 100, 2014, pp.215–226.
12. Dragun, J., “The soil chemistry of hazardous materials”, Hazardous material control research institute, Silver spring, 1988, p.458.
13. Graham, R.C., Hirmas, D. R., Wood, Y.A., Amrhein, C., “Large near-surface nitrate pools in soils capped by desert pavement in the Mojave Desert, California”, Geology, 36(3), 2008, p.259-262.
14. Gustafson, D.I., “Ground water ubiquity score: A simple method for assessing pesticide leachability”, Environmental Toxicology and Chemistry, 8, 1989, p.339-357.
15. Hendrickx, J.M.H., Flury, M., “Uniform and Preferential Flow Mechanisms in the Vadose Zone”, National Academy Press, 2001.
16. Huang, H.C., Liu, C.W., Chen, S.K., Chen, J.S., “Analysis of percolation and seepage through paddy bunds”, Journal of Hydrology, 284, 2003, pp.13-25.
17. Inoue, T., Ebise, S., Numabe, A., “Runoff characteristics of particulate pesticides in a river from paddy fields”, Water Science and Technology, 45(9), 2002, pp.121-126.
18. Jang, C.S., Liu, C.W., Contamination potential of nitrogen compounds in the heterogeneous aquifers of the Choushui River alluvial fan, Taiwan, Journal of Contaminant Hydrology, 79, 2005, pp.35-155.
19. Janssen, M., Lennartz, B., “Water losses through paddy bunds: Methods, experimental data, and simulation studies”, Journal of Hydrology, 369, 2009, pp.142-153.
20. Jeon, J.H., Yoon, C.G., Anthony, S., Donigian, J., Jung, K.W., “Development of the HSPF-Paddy model to estimate watershed pollutant loads in paddy farming regions”, Agricultura l Water Management, 90, 2007, pp.75-86.
21. Ji, X., Zheng, S.,¬ Shi, L.H., Liao, Y.L., “Effect of fertilization on nutrient leaching loss from different padday soils in DongTing Lake area”, Acta Pedologica Sinica, 45(4), 2008.
22. Kang, M.S., Park, S.W., Lee, J.J., Yoo, K.H., “Applying SWAT for TMDL programs to a small watershed containing rice paddy fields”, Agricultural Water Management, 79, 2006, pp.72–92.
23. Kukal, S.S., Aggarwal, G.C., “Percolation losses of water in relation to puddling intensity and depth in a sandy loam rice (Oryza sativa) field”, Agricultural Water Manage., 57, 2002, pp.49-59.
24. Lin, D.X., Fan, X.H., Hu, F., Zhao, H.T., Luo, J.F., “Ammonia Volatilization and Nitrogen Utilization Efficiency in Response to Urea Application in Rice Fields of the Taihu Lake Region, China”, Soil Science Society of China, 17(5), 2007, pp. 639–645.
25. Lin L., Zhang Z., Manon, J., Bernd, L., “Infiltration properties of paddy fields under intermittent irrigation”, Paddy Water Environ., 12, 2014, pp.17-24.
26. McCall, P.J., Laskowski, D.A., Swann, R.L., Dishburger, H. J., “Measurement of sorption coefficients of organic chemicals and their use in environmental fate analysis”, In Test Protocols for Environmental Fate and Movement of Toxicants, 1980, pp. 89-109.
27. Nishimura, S., Sawamoto, T., Akiyama, H., Sudo, S., Yagi, K., “Methane and nitrous oxide emissions from a paddy field with Japanese conventional water management and fertilizer application”, Global Biogeochemical Cycles, 18, 2004.
28. Odhiambo, L.O., Murty, V.V.N., “Modeling water balance components in relation to field layout in lowland paddy fields. I. Model development”, Agricultural Water Manage., 30, 1996(a), pp185-199.
29. Odhiambo, L.O., Murty, V.V.N., “Modeling water balance components in relation to field layout in lowland paddy fields. II. Model application”, Agricultural Water Manage., 30, 1996(b), pp201-216.
30. Painuli, D.K., Woodhead, T., Pagliai, M., “Effective use of energy and water in rice–soil puddling”, Till. Res., 12, 1988, pp.149-161.
31. Pathak, B.K., Kazama, F., Toshiaki. I., “Monitoring of Nitrogen Leaching from a Tropical Paddy in Thailand”, Agricultural Engineering International: the CIGR Journal of Scientific Research and Development, Manuscript LW 04 015 Vol. 6, 2004.
32. Samsonov, Y.N., Pokrovski, L.M., “Sensitized Photo decomposition of high disperse pesticide chemicals exposed to sunlight and irradiation from halogen or mercury lamp”, Atmospheric Environment, 35(12), 2001, pp.2133-2141.
33. Simonich, S.L., Hites. R.A., “Organic pollutant accumulation in vegetation”, Environ. Sci. Technol., 29, 1995, pp.2905-2914.
34. Tang, J.L., Zhang, B., Gao, C., Zepp, H., “Hydrological pathway and source area of nutrient loss identified by a multi-scale monitoring in an agricultural catchment”, Catena, 72, 2008, pp.374–385.
35. Takagi, S., “Analysis of the vertical downward flow of water through a two-layered soil”, Soil Science, 90, 1960, pp.98-103.
36. Tiryaki, O., Temur, C., “The Fate of Pesticide in the Environment”, J. BIOL. ENVIRON. SCI., 4(10), 2010, pp.29-38.
37. Tian, Y.H., Yin, B., Yang, L.Z., Yin, S.X., Zhu, Z.L., “Nitrogen runoff and leaching losses during rice-wheat rotations in Taihu Lake region”, China. Pedophere, 17(4), 2007, pp.445–456.
38. Tournebize, J., Watanabe, H., Takagi, K., Nishimura, T., “The development of a coupled model (PCPF-SWMS) to simulate water flow and pollutant transport in Japanese paddy fields”, Paddy and Water Environment, 4, 2006, pp.39-51.
39. Tsubo M., Fukai S., Tuong T. P., Ouk M.,“A water balance model for rainfed lowland rice fields emphasising lateral water movement within a toposequence”, Ecological Modelling, 204, 2007, pp.503-515.
40. Tuong, T.P., Wopereis, M.C.S., Marquez, J.A., Kropff, M.J., “Mechanisms and control of percolation losses in irrigated puddled rice fields”, Soil Science Society of America Journal, 58, 1994, pp.1794-1803.
41. Uhlman, K., Artiola, J., “Nitrate Contamination Potential in Arizona Groundwater: Implications for Drinking Water Wells”, Arizona Cooperative extension, AZ 1536, 2011.
42. Verma, A., Kanwar, R.S., Tim, U.S., “Modification of drainage model by using the nitrogen component from the GLEAMS model”, Transactions of the ASAE, 38(3), 1995, pp.716-724.
43. Walker, S.H., Rushton, K.R., “Verification of lateral percolation losses from irrigated rice fields by a numerical model”, Journal of Hydrology, 71, 1984, pp.335-351.
44. Walker, S.H., Rushton, K.R., “Water losses through the bunds of irrigated rice fields interpreted through an analogue model”, Agricultural Water Management, 11, 1986, pp.59-73.
45. Wang, K., Zhang, Z., Zhu, Y., Wang, G., Shi, D., Christie, P., “Surface water phosphorus dynamics in rice fields receiving fertiliser and manure phosphorus”, Chemosphere, 42, 2001, pp.209-214.
46. Watanabe, H., Nguyen, M.H.T., Souphasay, K., Vu, S.H., “Effect of water management practice on pesticide behavior in paddy water”, Agricultural Water Management, 88, 2007.
47. Wickham, T.H., Singh, V.P., “Water movement through wet soils, In: Soils and Rice”, International Rice Research Institute, 1978, pp. 337-357.
48. Wopereis, M.C.S., Bouman, B.A.M., Kropff, M. J., Tenberge, H.F.M., Maligaya, A.R., “Water-use efficiency of flooded rice fields. I. Validation of the soil–water balance model SAWAH”, Agricultural Water Manage., 26, 1994, pp277-289.
49. Yoon, K.S., Choi, J.K., Son, J.G., Cho, J.Y., “Concentration profile of nitrogen and phosphorus in leachate of a paddy plot during the rice cultivation period in southern Korea”, Communications in Soil Science and Plant Analysis, 37, 2006, pp.957-972.
50. Zaslavsky, D., “Theory of unsaturated flow into a non-uniform soil profile”, Soil Science Society of America Journal”, 97, 1964, pp.400-410.
51. Zhou, S., Nishiyama, K., Watanabe, Y., Hosomi, M., “Nitrogen budget and ammonia volatilization in paddy fields fertilized with liquid cattle waste”, Water Air Soil Pollution, 201, 2009, pp.135–147.
52. Zhu, J.G., Liu, G., Han, Y., Zhang, Y.L., Xing, G.X., “Nitrate distribution and denitrification in the saturated zone of paddy field under rice/wheat rotation”, Chemosphere, 50, 2003, pp.725–732.
53. Zou, J., Huang, Y., Zheng, X., Wang, Y., “Quantifying direct〖 N〗_2 O emissions in paddy fields during rice growing season in mainland China: Dependence on water regime”, Atmospheric Environment, 41, 2007, pp.8030–8042.
54. 102年農藥原料用量統計排行,農委會動植物防疫檢疫局,網址: http://www.baphiq.gov.tw/files/web_articles_files/baphiq/9059/3578.pdf,取自:2017年3月22日。
55. 什麼是農藥,農藥資訊服務網,網址:https://pesticide.baphiq.gov.tw/web/briefDetailView.aspx?sn=15,取自:2017年7月3日。
56. 全國地下水管理與整合計畫,行政院環境保護署, 2017。
57. 地下水關切物質調查及管制策略研析計畫,行政院環境保護署,2017。
58. 吳建富,不同肥料結構對紅壤稻田氮素遷移的影響,植物營養與肥料學報第7期第4卷,2001,第368-373頁。
59. 李英明,農政與農情,農地合理施肥-農業永續經營,第280期,2015。
60. 李國欽,農藥環境污染的管理策略,農藥世界第135期,1994,第29-31頁。
61. 李國欽、李貽華,農藥汙染地下水可能性之檢定測定法,植保會刊,第26期,1984,第413-421頁。
62. 李國欽、林浩潭,農藥與土壤-藥毒所專題報導,第13期,1989,第1–8頁。
63. 李貽華、徐慈鴻,水、土中氟氯比之殘留分析,雜草學會會刊,第27期,第一卷,2006,第31-42頁。
64. 林宜平,DDT與樹頭的死貓—台灣除瘧的科技與爭議,科學發展,第452期,2010,第84-85頁。
65. 林浩潭,農藥在環境中之宿命及對環境之安全評估,農藥及植物保護知能研習講義,第17期,2005,第1-9頁。
66. 林浩潭,農藥在環境中之宿命及對環境之衝擊,農業世界,第285期,第26-31頁,2007。
67. 金朝暉,農藥涕滅威在土壤中的移動性及地下水影響研究,農業環境科學學報第22期,第4卷,2003。
68. 南區水資源局,曾文水庫越域引水工程計畫-施工環境監測及評估第二階段總報告,2013,第479頁。
69. 唐蓮、白丹,農業活動非點源汙染與地下水的污染與防治,水土保持研究第10卷第4期,2003。
70. 孫紹榮,不同氮肥施用量對土壤及小麥產量和品質的影響,施肥與環境學術討論會論文集,第85-88頁,1992。
71. 翁志弘,農藥市場發展現況及趨勢,政策研究指標資料庫PRIDE,第1-8頁,2016。
72. 殺真菌劑的種類與特性,2005,農藥資訊服務網,網址:https://pesticide.baphiq.gov.tw/web/briefDetailView.aspx?sn=46,取自:2017年2月17日。
73. 連錫添,農藥殘留量對淡水養殖漁業之淺析,高雄區農業專訊,第8期,第27頁,1994。
74. 陶濤、信崑崙、段磊、王文科、孫亞喬,中國飲用水安全現狀與可持續發展,關中盆地淺層地下水氮污染的健康風險評價,水文地質工程地質,第38期,第3卷,2011,第92-97頁。
75. 農業統計資料查詢,行政院農業委員會農糧署104年統計資料,網址:http://agrstat.coa.gov.tw/sdweb/public/indicator/Indicator.aspx,取自:2016年10月14日。
76. 蔣永正,除草劑毒性及環境安全性,中華民國雜草會刊,第32期,2011,第117-131頁。
77. 蔣永正、蔣慕琰,常用除草劑之特性與應用,2009。網址:http://www.tactri.gov.tw/wSite/public/Attachment/f1380270413178.pdf,取自:2017年2月17日。
78. 羅秋雄,作物施肥手冊,行政院農業委員會農糧署,2005。
79. 觀測資料查詢系統,交通部中央氣象局104年統計資料,網址: http://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp,取自:2016年10月17日。
80. 觀測網月資料,交通部中央氣象局104年統計資料,網址: http://www.cwb.gov.tw/V7/climate/agri/agri_month.htm,取自:2016年10月17日。
81. 觀測網旬資料,交通部中央氣象局105年7月統計資料,網址: http://www.cwb.gov.tw/V7/climate/agri/agri_month.htm,取自:2016年10月25日。
論文全文使用權限:不同意授權