現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:以最小相位轉換法進行透地雷達反捲積於淺層孔洞之應用研究 [以論文名稱查詢館藏系統]
論文英文名稱:Application of GPR Data Deconvolution for Shallow Void Detection with Minimum-phase method [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木工程系土木與防災碩士班
畢業學年度:105
畢業學期:第二學期
出版年度:106
中文姓名:謝承志
英文姓名:Cheng-Jyh Shieh
研究生學號:104428043
學位類別:碩士
語文別:中文
論文頁數:151
指導教授中文名:陳水龍;康裕明
口試委員中文名:鄭丁興;蔡道賜
中文關鍵詞:透地雷達最小相位轉換法反捲積有限差分時間域模擬
英文關鍵詞:GPRminimum-phase methoddeconvolutionFDTD
論文中文摘要:近年來在非破壞檢測的項目中,透地雷達具有一定的成熟度及可靠性。在進行河堤鋪面下的掏空時可提供方便與有效率的檢測成果。然而在進行鋪面下掏空檢測時,常因使用的天線為低頻天線且因直接波的干擾,無法針對淺層的訊號進行辨識。
本研究針對訊號在淺層的直接波捲積現象進行研究,過往針對反捲積的研究,多透過合成訊號的方式,搭配現地試驗或是數值模擬搭配現地驗證,進行反捲積的處理;本研究透過自行合成函數的反捲積運算和搭配模擬訊號的反捲積運算進行研究,並設計出最小相位反捲積程式。透過不同淺層孔洞訊號的模擬,檢驗反捲積程式的成效性與準確度,並且透過室內試驗和砂箱試驗進行驗證。
研究結果顯示,透過最小相位反捲積程式可將模擬的捲積訊號進行分解,其中關鍵部分則是參考波的選擇和增益的調整。在模擬部分透過400MHz的天線模擬,最高可對9.4cm的孔洞進行辨識,並大部分達到誤差小於5%的精確度,在實際運用透地雷達的檢驗中,並無法跟模擬成果相同,但在本研究的實驗設計中對於1.6GHz的天線可達到最高空氣層4公分的辨識度。
論文英文摘要:Among the items of Non-Destructive Testing (NDT), the technique of ground penetrating radar (GPR) was developed and reliable in the recent years. The GPR was performed well on the detection of erosion under the pavement structure of dyke. But in the process of detection, it was difficult to distinguish the signal in the shallow layer due to the low-frequency antenna and the interruption caused by the direct-wave.

This thesis focuses on the signal deconvolution of direct-wave for the shallow layer. In the past years, most of the studies on the deconvolution were via the synthetic waves and the field tests; or via the numerical analyses and verified by the field data. In the studies of this thesis, the minimum-phase deconvolution equations were derived from the composed functions and the deconvolution computation of the simulated signals. The efficiency and the accuracy of the results were verified by the signal simulations of different shallow cavities and the tests of sand-box in laboratory.

According to the studies, the simulated deconvolution signals could be decomposed by the minimum-phase deconvolution equation. The key-points of the study were the selection of reference-wave and the adjustment of ‘gain’. With the simulation by the 400 MHz antenna, the maximum 9.4 cm-cavity could be distinguished and the error percentage could reduce to 5% or less. The actual applications of ground penetrating radar in the field were different from the theoretic simulations; in this study by the 1600MHz antenna, the maximum 4.0cm-cavity could be distinguished.
論文目次:摘 要 i
ABSTRACT ii
誌 謝 iv
目錄 v
圖目錄 viii
表目錄 xii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機及目的 1
1.3 研究流程 2
第二章 文獻回顧 4
2.1 透地雷達介紹 4
2.2 透地雷達原理 5
2.2.1 透地雷達相關參數介紹 6
2.3 訊號捲積和反捲積介紹 9
2.3.1 訊號捲積和脈衝反應函數 10
2.3.2 訊號反捲積介紹 12
2.3.3 最小相位轉換法 13
2.4 過往相關研究參考 17
2.5 文獻評析 26
第三章 研究方法 28
3.1 GprMax 程式使用介紹 29
3.1.1 模擬介面和分割單元設定 30
3.1.2時間窗格設定 30
3.1.3邊界吸收條件 30
3.1.4材料參數 31
3.1.5 形狀指令 32
3.1.6 天線參數設定 32
3.1.7 分析步驟 32
3.1.8 檔案讀取 33
3.2 Matlab 程式介紹 35
3.3 Matlab重要指令介紹 36
3.3.1 Ricker小波和其頻率關係 36
3.3.2 訊號捲積和高斯雜訊 41
3.3.3 合成訊號的反捲積運算 44
3.3.4 時間軸增益和時頻分析STFT 46
3.3.5 最小相位轉換 49
3.3.6 低通濾波器 50
3.3.7 反捲積程式設定 50
3.4 GprMax 模型建置 55
3.4.1 Type 1 模型 -- 無限寬孔洞模型 55
3.4.2 Type2模型有限孔洞模型 58
3.4.3 Type3不規則孔洞模型 59
3.5 透地雷達室內實驗 60
3.5.1 主機 60
3.5.2 天線 60
3.5.3 螢幕和周邊設備 61
3.5.4 主機參數介紹 62
3.5.5 雷達設定 62
3.5.6 增益設定 63
3.5.7 疊加設定 63
3.5.8 室內檢測試驗 64
第四章 研究成果 66
4.1 合成函數捲積和反捲積成果 66
4.1.1 合成捲積反捲積運算 66
4.1.2 添加高斯雜訊的反捲積 71
4.1.3 GprMax的混合相位反捲積 82
4.2 最小相位轉換進行反捲積運算 90
4.2.1 Type1模型進行反捲積運算成果 90
4.2.2 Type2 模型進行反捲積運算成果 103
4.2.3 Type3 模型進行反捲積運算成果 118
4.3 室內試驗反捲積測試 122
4.4 綜合成果討論 132
4.4.1 增益和反捲積成效 132
4.4.2 最小相位反捲積準確度計算 135
4.4.3 現地驗證討論 143
4.4.4 條件控制 146
第五章 結論與建議 147
5.1 結論 147
5.2 建議 148
參考文獻 150
論文參考文獻:1.Annan, A.P., Ground Penetrating Radar Principles, Procedures & Applications, Conada: Sensors & Software Inc. ,2003, pp.1, pp.166-168.
2.Arosio, 2016, "Rock Fracture Characterization with GPR by Means of Deterministic Deconvolution," Journal of Applied Geophysics, Vol. 126, pp. 27-34.
3.Diamanti, N. and Redman, D., 2012, "Field Obsercations and Numerical Models of GPR Response from Vertical Pavement Cracks," Journal of Applied Geophysics, vol. 81, pp. 106-116.
4.Economou, N. and Vafidis, A., 2012, "GPR Data Time Carrying Deconvolution by Kurtosis Maximization," Journal of Applied Geophysics, Vol. 81, pp. 117-121.
5.GprMax user guide, http://docs.gprmax.com/en/latest/ (檢索日期 2017/06/15)
6.Jol, H. M., Ground Penetrating Radar: Theory and Applications, UK: Elsevier B.V. ,2009, pp.158
7.Prokis, J.G and Manolakis, D.G., Introduction To Digital Signal Processing, New York: Macmillan Publishing Company, 1989, pp.452-457.
8.Sato, M, 2009, "Principles of Mine Detection by Ground-penetrating Radar, "Anti-personnel Landmine Detection for Humanitarian Demining, pp.19-24.
9.Schmelzbach, C. and Hyber, E., 2015, "Efficient Deconvolution of Ground-Penetrating Radar Data," IEEE Transactions on Geoscience and Remote Sensing, vol. 53, No. 9., pp.5209-5217.
10.Wold, H.,1939, "A Study In Analysis of Stationary Time Series," Journal of the Royal Statistical Society, vol. 102, No.2, pp295-298.
11.Zhao, S. and Shangguan, P. and Al-Qadi, I.L., 2015, "Application of Regularized Deconvolution Technique for Predicting Pavement Thin Layer Thicknesses from Ground Ppenetrating Radar Data," NDT&E International, Vol. 73, pp. 1-7.
12.徐伯勛、白旭濱、傅孝毅,信號處理中的數學變換和估計方法,北京: 清華大學出版社,2004,第23-25頁,第188-193頁。
13.康裕明,非破壞檢測-透地雷達上課講義,2012。
論文全文使用權限:同意授權於2022-07-31起公開