現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:飛灰複合水膠水泥砂漿之工程性質研究 [以論文名稱查詢館藏系統]
論文英文名稱:Engineering Properties of Cement Mortar with Fly Ash Composite Hydrogel [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木工程系土木與防災碩士班
畢業學年度:105
畢業學期:第二學期
出版年度:106
中文姓名:陳永璘
英文姓名:Yong-Lin Chen
研究生學號:102428022
學位類別:碩士
論文頁數:119
指導教授中文名:黃中和
指導教授英文名:Chung-Ho Huang
口試委員中文名:顏聰;許貫中;彭瑞麟;陳豪吉
中文關鍵詞:飛灰水膠高吸水性高分子水泥砂漿養護劑
英文關鍵詞:Fly AshHydrogelSuperabsorbent polymersCement MortarCuring Agent
論文中文摘要:高吸水性水膠作為混凝土內部養護劑,有留下孔隙使強度折減之缺點。為此,本文將水膠合成過程中加入飛灰,製成所謂飛灰複合水膠。研究上,在一般聚丙烯水膠中摻入0%、5 %、10 %、20 %飛灰,探討吸水與釋水行為。其後,考慮四種水膠添加率(0 %、0.1 %、0.2 %、0.4 %),分別拌製於四種不同水灰比(0.3、0.4、0.5、0.6)水泥砂漿。最後,測試水泥砂漿之新拌性質、力學性質、體積穩定性及微觀結構觀測等,藉以評估新型飛灰複合水膠對水泥砂漿工程性質之影響。
由試驗結果可知,在高相對濕度的環境中,當水膠中飛灰含量越多,其內部離子濃度改變越大則釋水率越高,但水膠之釋水行為主要受環境濕度影響較明顯。另外,飛灰含量由0 %提高至20 %時,水膠吸水率下降62 %。水膠摻入水泥砂漿需額外加水或強塑劑始能維持工作性。飛灰複合水膠添加率由0 %~0.4 %時,其56天水泥砂漿抗壓強度變化於189 kgf/cm2~705 kgf/cm2,以0.2 %者為最高。在56天乾燥收縮試體量測值變化於65μm/m~318μm/m,隨著水膠添加率越高收縮量越小。當新型水膠之飛灰含量由0 %提高至20 %時,高水灰比(0.5、0.6)水泥砂漿, 56天齡期砂漿抗壓強度平均增加8.5 %,在低水灰比(0.3、0.4)組別增加約20 %,顯示新型水膠用於低水灰比水泥砂漿較有利。由掃描式電子顯微鏡觀測出,水膠中飛灰會與水泥漿體產生卜作嵐反應,可用以填補水膠釋水產生的孔隙。
論文英文摘要:Superabsorbent hydrogel works as a kind of internal curing agent for concrete. One notable weakness of this hydrogel is that it leaves pores inside concrete, which reduces the concrete’s strength. In response, this study added fly ash during hydrogel synthesis to produce what is called a fly ash composite hydrogel. First, 0%, 5%, 10%, and 20% fly ash was incorporated into general polypropylene hydrogel to observe water absorption and desorption behavior. Subsequently, four types of hydrogel addition rates (0%, 0.1%, 0.2%, and 0.4%) were considered for producing cement mortar with four respective water–cement ratios (0.3, 0.4, 0.5, 0.6). Finally, the fresh properties, mechanical properties, and volume stability were tested and the microstructures of the cement mortar mixtures were observed to assess the influence of the proposed fly ash composite hydrogel on the engineering properties of cement mortar.
The test results indicated that higher fly ash content in the hydrogel induces more substantial changes in inner ion concentration and generates a higher water desorption rate in an environment with high relative humidity. However, water desorption behavior of the hydrogel was mainly affected by environmental humidity. Moreover, when fly ash content was increased from 0% to 20%, the hydrogel water absorption rate was decreased by 62%. When this novel hydrogel was incorporated into cement mortar, the amount of water or superplasticizer had to be added to maintain workability. Additionally, when the addition rate of the fly ash composite hydrogel changed from 0% to 0.4%, the compressive strength of cement mortar changed from 189 kgf/cm2 to 705 kgf/cm2 at 56 days age. The highest strength was demonstrated at 0.2%. Within 56 days, the dry shrinkage strain of the specimen increased from 65 μm/m to 318 μm/m; by contrast, the dry shrinkage strain decreased when the hydrogel addition rate was increased. When the fly ash content of the novel hydrogel increased from 0% to 20%, the compressive strength of the cement mortar with the high water–cement ratios (0.5–0.6) increased by 8.5% at 56 days age. Conversely, the compressive strength of a cement mortar with the low water–cement ratios (0.3–0.4) increased by approximately 20%. This demonstrates that the proposed hydrogel is more beneficial in cement mortar with low water–cement ratios. Finally, a scanning electron microscope (SEM) was used to observe that a pozzolanic reaction occurs between the cement paste and fly ash in the hydrogel; this can be used to fill the pores caused by the water desorption of the hydrogel.
論文目次:目錄

摘 要 i
ABSTRACT ii
誌 謝 iv
目錄 v
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究方法與流程 2
第二章 文獻回顧 5
2.1 混凝土養護之技術 5
2.1.1 混凝土養護之目的 5
2.1.2 養護條件對混凝土性質之影響 6
2.1.3 混凝土之養護技術 8
2.2 水膠之簡介 11
2.2.1 水膠之合成技術 11
2.2.2 水膠之種類 12
2.2.3 水膠之應用 13
2.3 水膠混凝土之研究成果 15
2.3.1 水膠做為混凝土內養護劑之研究成果 15
2.3.2 用於混凝土特殊水膠之研究成果 16
2.3.3 水膠混凝土工程性質研究成果 17
2.4 卜作嵐材料於混凝土之應用 18
2.4.1 卜作嵐材料之種類 18
2.4.2 卜作嵐材料之特性 19
2.4.3 卜作嵐材料應用於混凝土 20
2.5 混凝土微觀結構之研究 21
2.5.1 混凝土之組成構造 21
2.5.2 微觀結構之觀察方法與比較 22
第三章 試驗計畫 31
3.1 試驗材料與設備 31
3.1.1 試驗材料 31
3.1.2 水膠試驗設備 32
3.1.3 水泥砂漿試驗設備 32
3.2 水膠備製 33
3.2.1 一般聚丙烯水膠備製 33
3.2.2 飛灰複合水膠備製 34
3.2.3 水膠顆粒分布 34
3.2.4 孔隙水溶液備製 35
3.3 試驗方法 35
3.3.1 材料性質試驗 35
3.3.2 水泥砂漿拌製程序 38
3.3.3 新拌性質試驗法 38
3.3.4 力學性質試驗與體積變化量測 39
3.4 試驗變數與配比 42
3.4.1 試驗變數及配比介紹 42
3.4.2 試驗組別編碼說明 42
第四章 試驗結果與分析 57
4.1 飛灰複合水膠之特性 57
4.1.1 水膠之吸水行為 57
4.1.2 水膠之釋水行為 59
4.1.3 小結 60
4.2 飛灰複合水膠水泥砂漿之新拌性質 61
4.2.1 工作性 61
4.2.2 凝結時間 63
4.2.3 小結 65
4.3 飛灰複合水膠水泥砂漿之硬固性質 65
4.3.1 抗壓強度 65
4.3.2 抗彎強度 67
4.3.3 體積穩定性 68
4.4 飛灰複合水膠水泥砂漿之微觀結構分析 70
4.4.1 普通水泥砂漿之微觀結構 70
4.4.2 水膠添加率對水泥砂漿微觀結構之影響 70
4.4.3 水膠種類對水泥砂漿微觀結構之影響 71
第五章 結論與建議 109
5.1 結論 109
5.1.1 水膠吸水行為之探討 109
5.1.2 水膠對水泥砂漿新拌性質之影響 110
5.1.3 水膠對水泥砂漿硬固性質之影響 111
5.1.4水膠水泥砂漿之體積變化與微觀結構 112
5.2 建議 112
參考文獻 115
論文參考文獻:參考文獻

顏聰,土木材料,第四版,2014。
D. Snoeck, S. Steuperaert, K. Van Tittelboom, P. Dubruel, N. De Belie, "Visualization of water penetration in cementitious materials with superabsorbent polymers by means of neutron radiography", Cement and Concrete Research, vol. 42, 2012,pp. 1113-1121.
ACI Committee 318, "Building Code Requirements for Structural Concrete and Commentary," American Concrete Institute, Detroit, 2005.
P. Ballester, A. Hidalgo, I. Marmol, J. Morales, L. Sanchez, "Effect of brief heat-curing on microstructure and mechanical properties in fresh cement based mortars", Cement and Concrete Research, vol. 39, 2009, pp. 573-579.
Kubra Ekiz Baris, "Earth of Datca: Development of pozzolanic activity with steam curing", Construction and Building Materials, vol. 139, 2017, pp. 212-220.
R.J. Thomas, Diego Lezama, Sulapha Peethamparan, "On drying shrinkage in alkali-activated concrete: Improving dimensional stability by aging or heat-curing", Cement and Concrete Research, vol. 91, 2017, pp. 13-23.
Bao Jian Zhan, Dong Xing Xuan, Chi Sun Poon, Cai Jun Shi, "Effect of curing parameters on 〖CO〗_2 curing of concrete blocks containing recycled aggregates", Cement and Concrete Composites, vol. 71, 2016, pp. 122-130.
Chenhui Jiang, Yang Yang, Yong Wang, Yuenian Zhou, Chengchang Ma, "Autogenous shrinkage of high performance concrete containing mineral admixtures under different curing temperatures", Construction and Building Materials, vol. 61, 2014, pp. 260-269.
Jianhui Liu, Caijun Shi, Xianwei Mab, Kamal H. Khayat, Jian Zhang, Dehui Wang, "An overview on the effect of internal curing on shrinkage of high performance cement-based materials", Construction and Building Materials, vol. 146, 2017, pp. 702-712.
Katalin Orosz, Hans Hedlund, Andrzej Cwirzen, "Effects of variable curing temperatures on autogenous deformation of blended cement concretes", Construction and Building Materials, vol. 149, 2017, pp. 474-480.
M. Ibrahim, M. Shameem, M. Al-Mehthel, M. Maslehuddin, "Effect of curing methods on strength and durability of concrete under hot weather conditions", Cement and Concrete Composites, vol. 41, 2013, pp. 60-69.
Bin Xue, Jianzhong Pei, Yanping Sheng, Rui Li, "Effect of curing compounds on the properties and microstructure of cement concretes", Construction and Building Materials, vol. 101, 2015, pp. 410-416.
Ahmet Benli, Mehmet Karatas, Yakup Bakir, "An experimental study of different curing regimes on the mechanical properties and sorptivity of self-compacting mortars with fly ash and silica fume", Construction and Building Materials, vol. 144, 2017, pp. 552-562.
Hans Beushausen, Nicholas Bester, "The influence of curing on restrained shrinkage cracking of bonded concrete overlays", Cement and Concrete Research, vol. 87, 2016, pp. 87-96.
Miguel Jose Oliveira, Antonio Bettencourt Ribeiro, Fernando Garrido Branco, "Curing effect in the shrinkage of a lower strength self-compacting concrete", Construction and Building Materials, vol. 93, 2015, pp. 1206-1215.
Hamza Samouh, Emmanuel Roziere, Vincent Wisniewski, Ahmed Loukili, "Consequences of longer sealed curing on drying shrinkage, cracking and carbonation of concrete", Cement and Concrete Research, vol. 95, 2017, pp. 117-131.
ACI Committee 517, "Required Practice for Atmosphere Pressure Steam Curing of Concrete", American Concrete Institute, Detroit, 1970.
Jensen, O.M. and P.F. Hansen, "Water-entrained cement-basedmaterials II. Experimental observations", Cement and Concrete Research, vol. 32, 2002, pp. 973-978.
Jensen, O.M. and Pietro Lura, "Techniques and Materials for Internal Water Curing of Concrete", Materials and Structures, vol. 39, 2006, pp. 817-825.
J. Justs, M. Wyrzykowski, D. Bajare and P. Lura, "Internal Curing by Superabsorbent Polymers in Ultra-HighPerformance Concrete", Cement and Concrete Research, vol. 76, 2015, pp. 82-90.
Luis Pedro Esteves, "Superabsorbent polymers : On their interaction with water and pore fluid", Cement and Concrete Composites, vol. 33, 2011, pp. 717-724.
Ali Pourjavadi, Seyed Mahmoud Fakoorpoor, Payam Hosseini and Alireza Khaloo, "Interactions between Superabsorbent Polymers and Cement-Based Composites Incorporating Colloidal Silica Nanoparticles", Cement & Concrete Composites, vol. 37, 2013, pp. 196-204.
王文秀,智能水凝膠,醫藥前沿,第75-79頁,2011。
Zhigang Suo, Nature Reviews, vol. 489, 2012, pp. 133。
Y. Bao, J. H. Maa, N. Li, Synthesis, "Swelling Behaviors of Sodium Carboxymethyl Cellulose-G-Poly(AA-co-AM-co-AMPS)/MMT Superabsorbent Hydrogel", Carbohydrate Polym, vol. 84, 2011, pp. 76-82.
M. Baniasadi, M. Minary-Jolandan, "Alginate-Collagen Fibril Composite Hydrogel", Materials, vol. 8, 2015, pp. 799-814.
藍漢中,聚(丙烯酸/丙烯醯胺)/飛灰複合水膠的合成和性質研究,碩士論文,國立臺灣師範大學化學系研究所,台北,2015。(指導教授:許貫中)
石政坪,以UV光聚合Chitosan-PAA-pHEMA水膠應用於創傷敷料之研究,碩士論文,國立南台科技大學,台南,2008。(指導教授:林鴻儒)
Jensen OM, Hansen PF, "Water-entrained cement-based materials: I. Principlesand theoretical background", Cement and Concrete Research, vol. 31, 2001, pp. 647–54.
魏曉帆、陳爾東、柯國炬,高吸水樹脂對混凝土性能影響的研究現狀,建材世界,第36卷,第5期,2015。
ACI Committee 308, " Guide to Curing Concrete", American Concrete Institute, Detroit, 2001.
王立霞,混凝土自養護技術國内外研究進展,混凝土(5),第30-34頁,2014。
高美蓉、秦鴻根、龐超明,高性能混凝土自養護技術的研究現狀,混凝土與水泥製品(3),第9-12頁,2009。
鍾佩華、劉如平、王育江、李司晨、李磊,高吸水樹脂種類與粒形對高強混凝土自收縮及耐久性的影響,中國科技核心期刊,第101-106頁,2015。
J.Y. Wang,D. Snoeck, S. Van Vlierberghe, W. Verstraete and N. De Belie, "Application of Hydrogel Encapsulated Carbonate Precipitating Bacteria for Approaching a Realistic Self-Healing in Concrete", Construction and Building Materials, 2014, pp. 110-119.
Sravanthi Puligilla¸ ParamitaMondal, "Co-existence of Aluminosilicate and Calcium Silicate Gel Characterizedthrough Selective Dissolution and FTIR Spectral Subtraction", Cement and Concrete Research, vol. 70, 2015, pp. 39-49.
余勝雄,利用二階段式自由基共聚合製備酸鹼應答型水膠及性質探討,碩士論文,國立中興大學,台中,2002。(指導教授:邱信程)
何真、陳衍、梁文泉、楊華全,內部養護對混凝土收縮開裂性能的影響,新型建築材料(8),第7-11頁,2008。
朱長華、李享濤、王保江,內部養護對混凝土抗裂性及水化的影響,建築材料學報(2),第221-225頁,2013。
孔祥明、張珍林,高吸水性樹脂對高强混凝土自體收縮的減縮機理,矽酸鹽學報,第42期(2),第150-155頁,2014。
周宜婷,兩種半穿透型水膠之製備以及作為水泥砂漿自養護劑,碩士論文,國立臺灣師範大學,台北,2010。(指導教授:許貫中)
陳瑩芝,兩性離子型水膠作為自養護劑之研究,碩士論文,國立臺灣師範大學,台北,2010。(指導教授:許貫中)
黃兆龍,卜作嵐混凝土使用手冊,中國土木水利工程期刊,九樺出版社,2007。
行政院公共工程委員會,公共工程飛灰混凝土使用手冊,2009。
W. M, Lin, "The Investigation of Permeability Phenomena ofConcrete and Its Controlling Factor", Journal of ChineseEngineering, vol.7, no. 1, 1993, pp. 26-45.
林維明,混凝土耐久性之檢討,防蝕工程(6),第三期,1992。
陳曉杰,添加矽灰與飛灰對水泥質複合材料孔隙結構影響之研究,碩士論文,國立台灣海洋大學,基隆,2007。(指導教授:黃然、翁在龍)
D. S. Lane, "Combination of pozzolans and ground, granulated,blast-furnace slag for durable hydraulic cement concrete", VirginiaTransportation Research Council, 1999.
Chen, X.P., Shan, G.R. and Huang, Z.M., "Synthesis and properties of acrylic-based superabsorbent ", J Appl Polym Sci, vol. 92, no. 1, 2004, pp. 619-634.
論文全文使用權限:同意授權於2022-07-20起公開