現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:應用於植入式神經刺激上之後段製程整合開發 [以論文名稱查詢館藏系統]
論文英文名稱:Development Of Back-end Process Integration For Implantable Neurostimulation Applications [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:材料科學與工程研究所
畢業學年度:105
畢業學期:第二學期
中文姓名:古恆安
英文姓名:Heng An Ku
研究生學號:104788021
學位類別:碩士
指導教授中文名:陳柏均
口試委員中文名:陳柏均;陳適範;黃薇蓁;陳右穎
中文關鍵詞:黃光微影生物相容性微晶片
英文關鍵詞:Parylene CLift-off
論文中文摘要:近年來,植入式生醫電子元件越來越受到重視。用於神經疾病的電刺激裝置需要電活性及生物相容的材料來傳輸信號並同時能夠保護元件周圍的組織。此類型植入式醫電元件由晶圓代工廠製造完成後,仍需進行具生物相容性之後段製程包含晶片封裝與電極製備等。
本研究中,我們開發了植入式醫電元件的後段製程整合技術,結合Parylene  C的CVD與IrO2之PVD等鍍膜技術、表面改質、黃光微影及反應式離子乾蝕刻等製程,應用於新型植入式神經刺激元件以及製備供生物相容性測試之仿製晶片。
我們透過光學顯微鏡、掃描電子顯微鏡、能量色散X射線光譜、原子力顯微鏡、表面輪廓儀、和紫外線-可見光分光光譜分析表面形態,化學成分、光學性質。此外也探討親疏水性質與細胞之間的關係,透過浸泡試驗、CSC及阻抗進行可靠度評估,最後我們製備仿製晶片及後段製程之實際晶片進行SGS生物相容性評估。本研究之成果為來將應用於植入式生醫電子元件及提供生物相容性檢測之大量需求。
論文英文摘要:In recent years, biomedical electronics devices have attracted more and more attention. Electrostimulation devices for neural diseases require electroactive and biocompatible interface materials to transmit signals and to protect surrounding tissues at the same time.
In this work, we developed a back-end processes including electrode deposition, biocompatible packaging, surface treatments, photolithography, and RIE. This study demonstrated a possible solution for novel neurostimulation implants.
We also characterized the surface morphology, chemical composition, optical properties by optical microscope, scanning electron microscope, energy dispersive X-ray spectroscopy, atomic force microscope and alpha-step. In addition, the relationship between the hydrophobicity and the cell was discussed. The reliability was evaluated by the soaking test, CSC evaluation and electrochemical impedance spectroscopy analysis. Finally, the fabricated microchips were passed the biocompatibility evaluation by SGS. Therefore, the development of the back-end processes for implantable medical devices shown here may also bring significant impacts in the future.
論文目次:目錄
摘 要 i
ABSTRACT iii
誌 謝 v
目錄 vi
圖目錄 viii
表目錄 xii
第一章 緒論 - 1 -
1.1 前言 - 1 -
1.2 研究動機 - 2 -
第二章 文獻回顧 - 6 -
2.1 黃光微影 - 6 -
2.1.1 曝光 - 6 -
2.1.1.1 接觸式曝光(Contact exposure) - 6 -
2.1.1.2 近接式曝光(Proximity exposure) - 6 -
2.1.1.3 投影式曝光(Project exposure)[16] - 6 -
2.1.2 蝕刻技術 - 7 -
2.1.2.1 乾蝕刻(Dry etching) - 7 -
2.1.2.2 濕蝕刻(Wet etching) - 7 -
2.1.3 光阻剝離技術(Lift-off) - 8 -
2.2 鍍膜技術 - 9 -
2.2.1 化學氣相沉積(Chemical Vapor Deposition) - 9 -
2.2.1.1 Parylene C - 9 -
2.2.2 物理氣相沉積 - 11 -
2.2.2.1 氧化銥 - 12 -
2.2.3 化學鍍浴沉積法(CBD) - 13 -
2.3 分析技術 - 13 -
2.3.1 接觸角 - 13 -
2.3.2 表面粗糙度 - 15 -
2.3.3 貼附性 - 16 -
2.3.4 包覆性評估 - 18 -
2.3.4.2 電性量測 - 19 -
2.3.4.3 封裝洩漏 - 19 -
第三章 實驗方法與設備 - 20 -
3.1 元件結構 - 20 -
3.2 製作流程 - 20 -
3.3 曝光顯影 - 22 -
3.4 反應式離子蝕刻(Reactive Ion Etching) - 24 -
3.5 金屬層製備及Lift-off - 24 -
3.6 Parylene C製備 - 25 -
3.7 細胞測試 - 25 -
3.9 SGS生物相容性檢測 - 28 -
3.10 製程設備及分析儀器簡介 - 30 -
第四章 結果與討論 - 37 -
4.1 Parylene C圖形化之探討 - 37 -
4.2 生物相容性檢測 - 59 -
4.2.2 SGS結果報告 - 61 -
4.3 晶片後段製程之可靠度分析 - 63 -
第五章 結論 - 71 -
第六章 參考文獻 - 72 -
論文參考文獻:[1] Mak JN, Wolpaw JR. Biomed Eng IEEE Rev. 2 (2009)187–99.
[2] Pancrazio JJ, Peckham PH. Expert Rev Neurother. 9(4) (2009)427–30.
[3] Schwartz AB, Cui XT, Weber DJ, Moran DW. Neuron. 52(1) (2006)205–20.
[4] Yue-Feng Rui, Jing-Quan Liu, Bin Yang, Chun-Sheng Yang, Dai-Xu Wei, J Appl Electrochem. 43 (2013)301–308
[5] Donaldson PEK, Med Biol Eng Comput. 29(1991)34–39
[6] Haemmerle H, Kobuch K, Kohler K, Nisch W, Sachs H, Stelzle M, Biomaterials. 23 (2002)797–804
[7] Hassler C, Stieglitz T, IFMBE Proc. 22 (2008) 2439–2442
[8] Hsu J-M, Rieth L, Normann RA, Tathireddy P, Solzbacher F, IEEE Trans Biomed Eng. 56 (2009) 23–29
[9] Ramachandran A, Junk M, Koch KP, Hoffmann KP, IEEE Trans Adv Pack. 30 (2007)712–724
[10] Stieglitz T, J Nanosci Nanotechnol. 4(2004)496–503
[11] Takeuchi S, Ziegler D, Yoshida Y, Mabuchi K, Suzuki T, Lab Chip. 5 (2005) 519–523
[12] Yao Y, Gulari MN, Ghimire S, Hetke JF, Wise KD . In: Proceedings of 27th annual international conference IEEE EMBS. (2005)1293–1296
[13] Hsu, J.; Kammer, S.; Jung, E.; Rieth, L.; Normann, A. R.; Solzbacher, F. Proc. of the 3rd Intn’l Conf. on Multi-Material Micro Manufacture, 2007.
[14] Schmidt, E. M.; Bak, M. J.; Christensen, P. Journal of Neuroscience Methods., 62, April 1995 89–92.
[15]蕭晴文 (2017)。色素性視網膜退化症(Pigmentosary degeneration of Retinitis) 。台北市。取自http://www.genes-at-
taiwan.com.tw/genehelp/article.html?articleID=%25E8%2589%25B2%25E7
%25B4%25A0%25E6%2580%25A7%25E8%25A6%2596%25E7%25B6%25
B2%25E8%2586%259C%25E9%2580%2580%25E5%258C%2596%25E7%
2597%2587%28Pigmentosary%2520degeneration%2520of%2520Retin itis%
29&submenuIndex=1。
[16] 吳國裕(2008)。半導體微影覆蓋誤差的控制策略。未出版之碩士論文,國立交通大學工學院碩士在職專班半導體材料與製程設備組,新竹市。
[17] Mitu, B., Bauer-Gogonea, S., Leonhartsberger, H., Lindner, M., Bauer, S., & Dinescu, G. (2003).“Plasma-deposited parylene-like thin films: process and material properties”. Surface and Coatings Technology, 174–175, 124-130.
[18] Rodger, D. C., Fong, A. J., Li, W., Ameri, H., Ahuja, A. K., Gutierrez, C., Tai, Y.-C. (2008).“Flexible parylene-based multielectrode array technology for high-density neural stimulation and recording”. Sensors and Actuators B: Chemical, 132(2), 449-460.
[19] Selvarasah, S., Chao, S. H., Chen, C. L., Sridhar, S., Busnaina, A., Khademhosseini, A., & Dokmeci, M. R. (2008).“A reusable high aspect ratio parylene-C shadow mask technology for diverse micropatterning applications”. Sensors and Actuators A: Physical, 145–146, 306-315.
[20] Ahnood, A., Fox, K. E., Apollo, N. V., Lohrmann, A., Garrett, D. J., Nayagam, D. A. X., Prawer, S. (2016). “Diamond encapsulated photovoltaics for transdermal power delivery”. Biosensors and Bioelectronics, 77, 589-597.
[21] Jeong, Y. S., Ratier, B., Moliton, A., & Guyard, L. (2002). “UV–visible and infrared characterization of poly(p-xylylene) films for waveguide applications and OLED encapsulation”. Synthetic Metals, 127(1–3), 189-193.
[22]Preiss, E. M., Krauss, A., & Seidel, H. (2015). “Sputtered Pt electrode structures with smoothly tapered edges by bi-layer resist lift-off”. Thin Solid Films, 597, 158-164.
[23] Schropp, R.E.I. B. Stannowski, A.M. Brockhoff, P.A.T.T. van Veenendaal and J.K. Rath. “Hot wire CVD of heterogeneous and polycrystalline silicon semiconducting thin films for application in thin film transistors and solar cells”. Materials Physics and Mechanics. pp. 73–82
[24] Xie, X., Rieth, L., Caldwell, R., Diwekar, M., Tathireddy, P., Sharma, R., & Solzbacher, F. (2013). “Long-term bilayer encapsulation performance of atomic layer deposited Al2O3 and parylene c for biomedical implantable devices”. IEEE Transactions on Biomedical Engineering, 60(10), 2943-2951.
[25] Wang, R., Jiang, X., Wang, W., & Li, Z. (2017). “A microneedle electrode array on flexible substrate for long-term EEG monitoring”. Sensors and Actuators B: Chemical, 244, 750-758.
[26] Jeong, J., Chou, N., Lee, G., & Kim, S. (2016). “Annealing effects of parylene-caulked polydimethylsiloxane as a substrate of electrodes". Sensors (Switzerland), 16(12).
[27] Koss, M. J., Falabella, P., Stefanini, F. R., Pfister, M., Thomas, B. B., Kashani, A. H., Humayun, M. S. (2016). “Subretinal implantation of a monolayer of human embryonic stem cell-derived retinal pigment epithelium: a feasibility and safety study in Yucatán minipigs". Graefes Archive for Clinical and Experimental Ophthalmology, 254(8), 1553-1565.
[28] Vsiparylene compay.(2017, May 4)“Parylene-C properties". United States of America.(2017) from http://vsiparylene.com/parylene-advantages/properties/
[29] Fekete, Z., & Pongrácz, A. (2017). “Multifunctional soft implants to monitor and control neural activity in the central and peripheral nervous system: A review”. Sensors and Actuators B: Chemical, 243, 1214-1223.
[30] Parylene Engineering. (2017,May 4) “Why Use Parylene ? ”US. (2017, May 4). from http://www.paryleneengineering.com/why_use_parylene.htm.
[31] W.R Grove, “On Some Phenomena of the Voltaic Discharge. ” The Philosophical Maganie V16, 1840, pp.478-482.
[32]L.F. Mattheiss, Phys. Rev., B 13 (1976) 2433.
[33]W.D. Ryden, A.W. Lawson, C.C. Sartain, Phys. Rev., B 1 (1970) 1494.
[34]S.F. Cogan, T.D. Plante, R.S. McFadden, R.D. Rauh, Sol. Energy Mater.16 (198
7) 371.
[35]K. Nishio, Y. Watanabe, T. Tsuchiya, Thin Solid Films 350 (1999) 96.
[36]A. Osaka, T. Takatsuna, Y. Miura, J. Non-Cryst. Solids 178 (1994) 313.
[37]T. Ioroi, N. Kitazawa, K. Yasuda, Y. Yamamoto, H. Takenaka,J. Electrochem . S
oc. 147 (2000) 2018.
[38]A. Fog, R.P. Buck, Sens. Actuators 5 (1984) 137.
[39] S. Yao, M. Wang, M. Madou, J. Electrochem. Soc. 148 (2001) H29
[40] Ooyen, A. v., Topalov, G., Ganske, G., Mokwa, W., & Schnakenberg, U. (2009). Iridium oxide deposited by pulsed dc-sputtering for stimulation electrodes. Journal of Micromechanics and Microengineering, 19(7), 074009.
[41]Maher M, Wright J, Pine J and Yu-Chong T 1998 A microstructure for interfacing with neurons: the neurochip Proc. 20th Ann. Int. Conf. IEEE
Engineering in Medicine and Biology Society 20 1698–702
[42]Slavcheva E, Vitushinsky R, Mokwa W and Schnakenberg U 2004 Sputtered iridium oxide films as charge injection material for functional electrostimulation J. Electrochem. Soc. 151 E226–37
[43] Robblee, L. S., Lefko, J. L., & Brummer, S. B. (1983). Activated Ir: An Electrode Suitable for Reversible Charge Injection in Saline Solution. Journal of The Electrochemical Society, 130(3), 731-733.
[44]Van Ooyen A, Wessling B, Slavcheva E and Schnakenberg U 2007
Evaluation of SIROF microelectrodes for single neuron stimulation in biohybrid
circuits Proc.Transducers’07 (Lyon, France, June 10–14 2007) pp 1227–30
[45] Wessling, B., Besmehn, A., Mokwa, W., & Schnakenberg, U. (2007). Reactively Sputtered Iridium Oxide: Influence of Plasma Excitation and Substrate Temperature on Morphology, Composition, and Electrochemical Characteristics. Journal of The Electrochemical Society, 154(5), F83-F89.
[46] Kang, X., Liu, J., Tian, H., Yang, B., NuLi, Y., & Yang, C. (2016). Sputtered iridium oxide modified flexible parylene microelectrodes array for electrical recording and stimulation of muscles. Sensors and Actuators B: Chemical, 225, 267-278.
[47] Xiaoyang, K., Jingquan, L., Hongchang, T., Bin, Y., Yanna, N., & Chunsheng, Y. (2014). Optimization and electrochemical characterization of RF-sputtered iridium oxide microelectrodes for electrical stimulation. Journal of Micromechanics and Microengineering, 24(2), 025015.
[48]Karthik, P. E., Raja, K. A., Kumar, S. S., Phani, K. L. N., Liu, Y., Guo, S.-X., . . . Bond, A. M. (2015). Electroless deposition of iridium oxide nanoparticles promoted by condensation of [Ir(OH)6]2- on an anodized Au surface: application to electrocatalysis of the oxygen evolution reaction. RSC Advances, 5(5), 3196-3199.
[49] Chung, Y.-C., Hess, G.-Y., Yeh, F.-W., Han, H.-C., Chen, C.-Y., Lee, C.-J., . . . Yang, L.-J. (2010). Fabrication and testing of surface ratchets primed with hydrophobic parylene and hexamethyldisilazane for transporting droplets. Journal of Micro/Nanolithography, MEMS, and MOEMS, 9(1), 013035-013035-013039.
[50]Xiao Chuan, O., Gary , K. F., & Peter , J. G. (2014). “Modulation of Parylene-C to silicon adhesion using HMDS priming”. Journal of Micromechanics and Microengineering, 24(10), 105001.
[51] Chun, W., Chou, N., Cho, S., Yang, S., & Kim, S. (2014). “Evaluation of sub-micrometer parylene C films as an insulation layer using electrochemical impedance spectroscopy”. Progress in Organic Coatings, 77(2), 537-547.
[52]Jeong, J., Chou, N., Lee, G., & Kim, S. (2016). “Annealing effects of parylene-caulked polydimethylsiloxane as a substrate of electrodes”. Sensors (Switzerland), 16(12).
[53]Boehler, C., Oberueber, F., Schlabach, S., Stieglitz, T., & Asplund, M. (2017). “Long-Term Stable Adhesion for Conducting Polymers in Biomedical Applications: IrOx and Nanostructured Platinum Solve the Chronic Challenge”. ACS Applied Materials & Interfaces, 9(1), 189-197.
[54]Xie, X., Rieth, L., Caldwell, R., Diwekar, M., Tathireddy, P., Sharma, R., & Solzbacher, F. (2013). “Long-term bilayer encapsulation performance of atomic layer deposited Al2O3 and parylene c for biomedical implantable devices”. IEEE Transactions on Biomedical Engineering, 60(10), 2943-2951.
[55] Cherevko, S., et al. (2016). “Oxygen evolution activity and stability of iridium in
acidic media. Part 1. – Metallic iridium. ” Journal of Electroanalytical Chemistry 773: 69-78.
論文全文使用權限:不同意授權