現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:IrO2/TiO2奈米管距控制應用於中性電解液之產氧反應 [以論文名稱查詢館藏系統]
論文英文名稱:Spacing controllable method of IrO2/TiO2 nanotubes for oxygen evolution reaction in a neutral electrolyte [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:材料科學與工程研究所
畢業學年度:105
畢業學期:第二學期
出版年度:106
中文姓名:邱昱維
英文姓名:Yu-Wei Chiu
研究生學號:104788027
學位類別:碩士
口試日期:20170623
論文頁數:67
指導教授中文名:陳柏均
指導教授英文名:Po-Chum Chen
口試委員中文名:陳適範;郭俞麟
中文關鍵詞:電解水產氧反應二氧化銥陽極處理奈米鈦管
英文關鍵詞:Water splitingOxygen evolution reactionIridium OxideAnodization
論文中文摘要:隨著環境的污染,目前必須迫切找出一種新的方法來轉換能量,而目前學者們發現電解水反應是一種新的能量轉換方式而且無汙染,但電解水反應能量轉換效率不佳,學者們發現是在電解水中的產氧反應( Oxygen evolution reaction )的效率所導致,而要使產氧效率好,其催化劑必須具備下列三點,第一必須具備低的過電位,第二要有良好的穩定性,第三TOF高,而二氧化銥皆具備上述三點。
本實驗先在鈦片上進行陽極處理,藉由配置之電解液,改變電壓可以控制不同管徑距離,再以化學浴沉積法鍍上IrO¬2使之具有奈米管形貌,以SEM,XRD以及EDS觀察表面性質,以循環伏安法以及線性掃描速率來測量不同參數之產氧反應效率,以交流阻抗判斷二氧化銥之含量,最後在計算出TOF,來找出對於產氧反應效率最好之最佳參數。
論文英文摘要:Due to the increase of environment pollution, we need to find out a new method to convert energy. Water splitting has become eye-catching because of no pollution, but the low convertion is still a problem to solve. It is believed that the difficulty in oxygen evolution reaction. As a good catalyst in OER, it has high overpotential, good stability, and high turnover frequency( TOF ). And iridium oxide has those points.
In our experiment, first we anodized on the titanium sheet . By our electrolyte, we can control the spacing between changing the voltage. Then we coated the irdium oxide on our titanium nanotubes by chemical bath deposition to get IrO2/TiO2 nanotubes, then we used SEM, XRD, EDS to observe the surface morphology. Using CV, LSV, EIS and to test the effective in OER, and finally we calculated the TOF to find out the best parameter for OER in a neutral electrolyte.
論文目次:摘要 i
Abstract ii
誌謝 iii
目錄 v
圖目錄 viiii
表目錄 xiii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 文獻回顧 3
2.1 鈦及鈦合金 3
2.2 二氧化鈦奈米管 4
2.3 二氧化鈦晶體結構 5
2.4 二氧化鈦奈米管之製備 6
2.4.1 模板製造法 6
2.4.2 溶膠凝膠法 7
2.4.3 水熱合成法 8
2.4.4 自組裝法 9
2.4.5 陽極處理法 10
2.4.5.1 影響陽極處理之因素 12
2.5 二氧化銥 16
2.6 產氧反應 ( Oxyegn evolution reaction, OER ) 20
第三章 實驗步驟與方法 21
3.1 實驗藥品 21
3.2 實驗儀器 22
3.3 實驗步驟 23
3.3.1 實驗流程圖 23
3.3.2 試片製備及前處理 24
3.3.3 電解拋光 24
3.3.4 陽極處理 25
3.3.5 熱處理 26
3.3.6 化學浴沈積法 26
3.4 儀器量測與分析 27
3.4.1 X光繞射儀 27
3.4.2 掃描式電子顯微鏡 27
3.4.3 能量散佈X-ray光譜儀 27
3.4.4 電化學分析 28
3.4.4.1 循環伏安法 ( Cyclic voltammetry, CV ) 28
3.4.4.2 線性掃描伏安法 ( Linear sweap voltammetry, LSV ) 28
3.4.4.3 交流阻抗 ( Electrochemical impedance spectrum, EIS ) 29
第四章 結果與討論 30
4.1 材料顯微結構分析( SEM ) 30
4.1.1 二氧化鈦奈米管之形成 30
4.1.2 化學浴沈積法後之二氧化鈦奈米管 39
4.2 X光能量散佈分析( EDS ) 49
4.3循環伏安法( CV ) 50
4.4 線性掃描伏安法( LSV ) 53
4.5 有效電流密度比較 55
4.6 X光繞射分析 ( XRD ) 58
4.7 Tunrover frequency( TOF ) 59
4.8 交流阻抗 60
第五章 結論 63
第六章 參考文獻 64
論文參考文獻:1. de Vries, B., M. Janssen, and A. Beusen, Perspectives on global energy futures: simulations with the TIME model. Energy Policy, 1999. 27(8): p. 477-494.
2. Lewis, N.S., and Daniel G. Nocera. , "Powering the planet: Chemical challenges in solar energy utilization.". Proceedings of the National Academy of Sciences, 2006. 103.43 p. 15729-15735.
3. B.D. Solomon, K.K., Energy Policy, (2011). 39: p. 7422–7431.
4. D. Gust, T.A.M., A.L. Moore, , Acc. Chem. Res. 42, (2009): p. 1890–1898.
5. W.J. Youngblood, S.-H.A.L., K.Maeda, T.E. Mallouk, Acc. Chem. Res. 42 (2009): p. 1966–1973.
6. R, A., J. Photochem. Photobiol. C: Photochem. Rev. 11, (2010): p. 179–209.
7. K. Maeda, K.D., J. Phys. Chem. Lett. 1, (2010) p. 2655–2661.
8. Y. Surendranath, M.D., D.G. Nocera, J. Am. Chem. Soc. 131, (2009): p. 2615–2620.
9. T. Nakagawa, C.A.B., R.W. Murray, J. Phys. Chem. C 113 (2009): p. 12958.
10. M. Carraro, A.S., F.M. Toma, F. Puntoriero, F. Scandola, S. Campagna, M. and M.B. Prato, Top. Curr. Chem. 303 (2011) p. 121–150.
11. N.D. Morris, M.S., T.E. Mallouk J. Phys. Chem. A 108, (2004) p. 9115.
12. M. Yagi, E.T., S. Sakita, T. Kuwabara, K. Nagai, J. Phys. Chem. B 109 (2005): p. 21489.
13. P.G. Hoertz, Y.K., W.J. Youngblood, T.E. Mallouk, J. Phys. Chem. B 111, (2007): p. 6845.
14. D. Gong, C.A.G., O. K. Varghese, W. Hu, R. S. Singh, Titanium oxide nanotube arrays prepared by anodic oxidation. Journal of Materials Research, 2001. vol. 16, no. 12: p. 3331-3334.
15. G. K. Mor, O.K.V., M. Paulose, N. Mukherjee and C. A. Grimes, Fabrication of tapered, conical-shaped titania nanotubes. journal of materials Research, vol. 18, no. 11, 2003: p. 2588-2593.
16. Q. Cai, M.P., O. K. Varghese and C. A. Grimes, The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. journal of materials Research, vol. 20,no. 1, 2005: p. 230-236.
17. C. Ruan, M.P., O. K. Varghese, G. K. Mor and C. A. Grimes, Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte. journal of Physical Chemistry, vol. 109, no. 33, 2005: p. 15754-15759.
18. J. M. M acak, H.T.a.P.S., High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angewandte Chemie-Internation Edition, vol. 44, no. 14, 2005: p. 7463-7465.
19. Selda Ozkan , N.T.N., Anca Mazare , Isotta Cerri , Patrik Schmuki Controlled spacing of self-organized anodic TiO2 nanotubes. Electrochemistry Communications 69, 2016: p. 76-79.
20. Chen, Y.-M., et al., A cost-effective fabrication of iridium oxide films as biocompatible electrostimulation electrodes for neural interface applications. Journal of Alloys and Compounds, 2017. 692: p. 339-345.
21. Lomg M, e.a., Biomaterials, 19, 1998: p. 1621.
22. E. Santis Jr., N.K.K.a.G.A.S., Mechanical properties of titania films used as biomaterials. Materials Chemistry and Physics, vol. 102, no. 1, 2007: p. 92-97.
23. Hoyer, P., Formation of a titanium dioxide nanotube array. Langmuir, vol. 12, no. 6, 1996: p. 1411-1413.
24. Lee, K., Mazare, A., Schmuki, P., One-dimensional titanium dioxide nanomaterials: Nanotubes. Chemical Reviews, 2014. 114 (19): p. 9385-9454.
25. T. Kasuga, M.H., A. Hoson, T. Sekino, K. Niihara, Formation of titanium oxide nanotube. Langmiur, vol. 14, no. 12, 1998: p. 3160-3163.
26. T. Kasuga, M.H., A. Hoson, T. Sekino, K. Niihara, Titania nanotubes prepared by chemical processing. Advanced Materials, vol. 11, no. 15, 1999: p. 1307-1311.
27. S. Kobayashi, K.H., N. Hamasaki, M. Kimura, H. Shirai, Preparation of TiO2 hollow-fibers using supramolecular assemblies. Chemistry of materials, vol. 12, no. 6, 2000: p. 1523-1525.
28. Sepideh Minagar, C.C.B., James Wang, Elena Ivanova, A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. Acta Biomaterialia, 2012. vol. 8: p. 2875-2888.
29. Jinliang Tao, J.Z., Chengcun Tang, Yingru Kang, Yangxian Li, Mechanism study of self-organized TiO2 nanotube arrays by anodization. New Journal of Chemistry, 2008. vol. 32: p. 2164-2168.
30. Gopal K. Mor, O.K.V., Maggie Paulose, Karthik Shankar, Craig A. Grimes, A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy application. Solar Energy Materials & Solar Cell, 2006. vol. 90: p. 2028.
31. Albu, S.P., Roy, P., Virtanen, S., Schmuki, P., Self-organized TiO2 nanotube arays: Critical effects on morphology and growth. Israel Journal of Chemistry, 2010. 50(4): p. 453-467.
32. Spori, C., Kwan, J.T.H. ,Bonakdarpour, A. ,Wilkinson, D.P. , Strasser, P., The stability challenges of oxygen evolving catalyst: Toward a common fundamental understanding and mitigation of catalyst degradation. Angewandte Chemie-Internation Edition, 2017. 56: p. 5994-6021.
33. Alessandro Minguzzi, O.L., Elisabetta Achilli, Cristina Locatelli, Alberto Vertova, Paolo Ghigna and Sandra Rondinini, Observing the oxidation state turnover in heterogeneous iridium-based water oxidation catalysts. Chem. Sci 2014. 5: p. 3591-3597.
34. E. Slavcheva, I.R., S. Bliznakov, G. Topalov, P. Andreev, E. Budevski, Sputtered iridium oxide films as electrocatalysts for water splitting via PEM electrolysis.
Electrochimica Acta, 2007. 52: p. 3889-3894.
35. Kushner-Lenhoff, M.N., Blakemore, J.D. , Schley, N.D. . Crabtee, R.H. , Brudvig, G.W., Effect of aqueous buffers on electrocatalytic water oxidation with an iridium oxide material electrodeposited in thin layers from an organometallic precusor. Dalton Transactions, 2013. 42: p. 3617-3622.
36. Anthony Harriman, I.J.P., John M. Thomas, Metal Oxides as Heterogeneous Catalysts for Oxygen Evolution under Photochemical Conditions. j. Chem, 1988. 84: p. 2795-2806.
論文全文使用權限:同意授權於2022-07-19起公開