現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:震害橋梁載重試驗之分析與補強後長期健康診斷方法之研究 [以論文名稱查詢館藏系統]
論文英文名稱:Loading Test Analysis of Earthquake Damaged Bridge and Study on Long-Term Health Diagnostic Method for Retrofitted Bridge. [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木工程系土木與防災碩士班
畢業學年度:105
畢業學期:第一學期
出版年度:106
中文姓名:張峰愷
英文姓名:Feng-Kai Chang
研究生學號:103428099
學位類別:碩士
語文別:中文
口試日期:2017/01/23
論文頁數:124
指導教授中文名:宋裕祺
指導教授英文名:Yu-Chi Sung
口試委員中文名:宋裕祺;張國鎮;洪曉慧
中文關鍵詞:移動載重有限元素法健康診斷方法乾縮潛便遺傳演算法
英文關鍵詞:Moving LoadFinite ElementHealth Diagnostic MeehodCreep and ShrinkageGene Algorithm
論文中文摘要:本文係使用有限元素分析軟體Midas Civil進行橋梁分析,首先以論例之解析解驗證分析軟體的準確性,再以一實際案例之災害橋梁建立模型,並透過實驗數據瞭解橋梁基本特性作為有限元素模型調整之依據,增加模型正確性。然而,因橋梁有限元素模型具有較多元素數導致分析效率不佳,本研究以實驗設計建立反應曲面函數以取代原有限元素模型,並配合遺傳演算法進行最佳化,得以符合實際橋梁之靜態特性,有效提升有限元素法模型最佳化計算效率。
本研究係以乾縮潛變之預測作為橋梁健康診斷方法,首先依據最佳化後之有限元素模型與補強工程圖說,建立橋墩補強之橋梁模型,將補強後之模型進行潛變與乾縮分析,並觀測各跨中點變位與各振動單元變位最大處之混凝土應力與鋼腱應力發展狀態,分析結果可供日後養護工作做為參考之依據。
論文英文摘要:The thesis first used a finite element system, Midas civil to analyze an example and compared with the analytical solution to verify the accuracy of the analyzing system. Then used the system to build an actual bridge model. To improve the reliability of finite element model, adjust the model by experiment data to realize the basic characteristic of the bridge。However, the finite element model with numerous elements leads to poor analysis efficiency. In view of this, the response method of experimental design function was proposed to take place of the finite element model by experimental design, and integrate with the genetic algorithm to optimize the model. The proposed response surface method gives the reliable results close to static and dynamic characteristic of actual bridge; effectively enhance the computational efficiency of finite element model to optimize.
The study used creep and shrinkage predicting analysis as the healthy diagnostic method. Based on optimized model and reinforcement drawings, retrofit the bridge columns in the bridge model and perform the creep and shrinkage analysis. Observed the displacement in the middle of each bridge span, concrete stress and tendon stress at the maximum displacement, the analyzed result can used as a reference for conservation work in the future.
論文目次:摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 vi
表目錄 xi
圖目錄 xii
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究方法與內容 2
1.3 論文組織與架構 2
第二章 文獻回顧 5
2.1 前言 5
2.2 遺傳演算法於工程上之應用 5
2.3 橋梁健康診斷方法之研究 7
2.4 混凝土乾縮潛變之探討 9
2.5 小結 12
第三章 基本理論與探討 13
3.1 前言 13
3.2 有限元素基本理論 13
3.2.1 有限元素法之基本原理[20] 14
3.2.2 有限元素分析方法 16
3.3 有限元素法分析的必要性與目的 16
3.4 有限元素法分析重點 17
3.4.1 有限元素法分析模式的建立 17
3.4.2 邊界條件的設定 17
3.4.3 載重施加的設定 17
3.4.4 元素網格化要點 18
3.5 Midas Fx+與Midas Civil之簡介 18
3.6 移動載重基本理論[21] 19
3.7 有限元素模型最佳化識別之基本觀念 27
3.7.1 矩陣最佳化識別法 28
3.7.2 設計參數調整法 29
3.8 基於反應曲面法之有限元素模型最佳化識別方法 29
3.8.1 實驗設計 30
3.8.1.1 全因子實驗設計 31
3.8.1.2 中心複合設計 31
3.8.1.3 Box-Behnken Design 32
3.8.2 反應曲面函數型式之選擇 33
3.8.3 反應曲面函數檢驗 35
3.8.4 參數顯著性檢定 36
3.9 小結 38
第四章 遺傳演算法GA 39
4.1 前言 39
4.2 遺傳演算法概述 39
4.3 遺傳演算法要點說明 42
4.3.1 編碼方式 42
4.3.1.1 二進制編碼 43
4.3.1.2 實數編碼 43
4.3.2 適應度函數 44
4.3.2.1 目標函數與適應度函數 44
4.3.2.2 適應度函數尺寸轉換 45
4.3.3 選擇操作 47
4.3.3.1 比例選擇法 48
4.3.3.2 菁英保留策略 48
4.3.3.3 排序選擇法 49
4.3.3.4 隨機聯賽法 49
4.3.3.5 期望值選擇法 49
4.3.4 交配操作 50
4.3.4.1 單點交配 50
4.3.4.2 雙點與多點交配 51
4.3.4.3 均勻交配 52
4.3.4.4 算數交配 53
4.3.5 突變操作 54
4.3.5.1 簡單突變 54
4.3.5.2 均勻突變 55
4.3.5.3 非均勻突變 55
4.3.5.4 高斯突變 56
4.3.5.5 邊界突變 56
4.4 具限制條件遺傳演算法 57
4.5 遺傳演算法之基本參數設計原則 59
4.6 遺傳演算法GA分析與驗證 60
4.7 小結 62
第五章 以靜態車載試驗為基準之震害橋梁有限元素模型最佳化 63
5.1 前言 63
5.2 橋梁基本介紹 63
5.3 車輛載重試驗 67
5.3.1 試驗標準 67
5.3.2 車輛載重試驗規劃 68
5.3.2.1 靜態載重試驗規劃 68
5.3.2.2 動態載重試驗規劃 71
5.3.3 量測系統 71
5.3.4 試驗數據 73
5.4 有限元模型之建立 74
5.5 基於試驗數據之遺傳演算法最佳化設計參數 77
5.5.1 反應曲面函數建立 78
5.5.2 遺傳演算法最佳化 85
5.6 試驗數據與有限元素分析比對 87
5.6.1 靜態車載試驗比對 87
5.6.2 動態車載試驗比對 88
5.7 小結 90
第六章 橋梁補強後之長期健康診斷 91
6.1前言 91
6.2 補強後有限元素模型建立 91
6.3 Midas Civil潛變乾縮計算模式 93
6.3.1 CEB-FIP 2010 Model 93
6.3.1.1 潛變係數計算方式 93
6.3.1.2 乾縮應變計算方式 95
6.3.2 材料潛變與乾縮係數 96
6.4 考慮潛變效應之分析結果 99
6.4.1 潛變效應造成各跨中點之位移變化量 99
6.4.2 潛變效應之混凝土應力檢核 101
6.4.3 潛變效應之鋼腱應力變化 104
6.5 考慮乾縮效應之分析結果 106
6.5.1 乾縮效應造成各跨中點之位移變化量 106
6.5.2 乾縮效應之混凝土應力檢核 107
6.5.3 乾縮效應之鋼腱應力變化 109
6.6 同時考慮潛變與乾縮效應之分析結果 110
6.6.1 潛變與乾縮效應造成各跨中點之位移變化量 110
6.6.2 潛變與乾縮之混凝土應力檢核 112
6.6.3 潛變與乾縮之鋼腱應力變化 113
6.6 小結 115
第七章 結論與建議 117
7.1 結論與貢獻 117
7.2 建議 118
參考文獻 119
論文參考文獻:[1] 陳彥豪、蔣啟恆與黃炳勳,「美濃地震橋梁災害之調查與修復設計-以台86縣24號橋為例」,土木技師期刊,第七十三期,民國105年,第70-77頁。
[2] 劉光晏、宋裕祺、張國鎮、陳嘉盈、汪令堯、吳萬龍、夏明勝,「美濃地震台86線24號橋之地震特別檢測與車輛載重試驗成果」,中華民國第十三屆結構工程研討會暨第三屆地震工程研討會,2016。
[3] J. H. Holland, Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence, Oxford, England: U Michigan Press, 1975, viii, 183.
[4] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wisley Longman Publishing Co., Inc., 1989, 372.
[5] S. Negaendra, Z. Jesti, R. T. Haftka and L. T. Watson, “Imroved genetic algorithm for the design of stiffened composite panels”, Journal of Computers and Structures, Vol. 58, No. 3, 1996, pp. 543-555.
[6] H. Wang and H. Ohmori, “Elasto plastic analysis based truss optimization using Genetic Algorithm”, Engineering Structures, Vol. 50, Issue, 2013, pp. 1-12.
[7] D. Ribeiro, R. Calcada, R. Delgado, M. Brehm, and V. Zabel, “Finite element model updating of a bowstring-arch railway bridge based on experimental modal parameters”, Engineering Structures, Vol. 40, Issue, 2012, pp. 412-435.
[8] J. Cheng, “Optimum design of steel truss arch bridges using a hybrid genetic algorithm”, Journal of Constructional Steel Research, Vol. 66, Issue 8-9, 2010, pp. 1011-1017.
[9] M. E. Semelawy, A. O. Nassef, nd A.A.E. Damatty, “Design of prestressed concrete flat slab using modern heuristic optimization techniques”, Expert Syst. Appl., Vol. 39, Issue 5, 2012, pp.5758-5766.
[10] P. Nanakorn and M. Konlakarn, “An adaptive penalty function in genetic algorithms for structural design optimization Original Research Article”, Computers & Structures, Volume, 70, Issues 29-30, 2001, pp. 252-2539.
[11] N. Kulprapha and P. Warnitchai, “Structural health monitoring of continuous prestressed concrete bridges using ambient thermal responsed”, Engineering Structures, Vol. 40, 2012, pp. 20-38.
[12] J. Lee, K. Sanmugarasa, M. Blumenstein and Y.C. Loo, “Improving the reliability of a Bridge Management System(BMS) using an ANN-based Backward Prediction Model(BPM)”, Automation in Construction, Vol. 40, Issue 6, 2008, pp.758-772.
[13] Z. Pan, B. Li and Z. Lu, “Re-evaluation of CEB-FIP 90 prediction models for creep and shrinkage with experimental database”, Construction and Building Materials, Vol. 38, 2013, pp. 1022-1030.
[14] H. Sousa, J. Bento and J. Figueiras, “Construction assessment and long-term prediction of prestressed concrete bridges based on monitoring data”, Engineering Structures, Vol. 52, 2013, pp. 26-37.
[15] T. Tong, Z. Liu, J. Zhang and Q. Yu, “Long-term performance of prestressed concrete bridges under the intertwined effects of concrete damage, static creep and traffic-induced cyclic creep”, Engineering Structures, Vol. 127, 2016, pp.510-524.
[16] O.C. Zienkiewicz and R.L. Taylo, The Finite Element Method – Volume 1: Basic Formulation and Linear Problemns, Fourth edition, UK: Mcgraw-Hill, 1991.
[17] O.C. Zienkiewicz and R.L. Taylo, “The Finite Element Method – Volume 2: Solid and Fluid Mechanics, Dynamics and Non-Linearity” Fourth edition, UK: Mcgraw-Hill, 1991.
[18] J.N. Reddy, “An Introduction to the Finite Element Method”, The Shock and Vibration Digest, Vol. 11, 1979, p.3.
[19] R.D. Cook, D.S. Malkus and M.E. Plesha, “Concepts and Applications of Finite Element Analysis”, Third edition, New York: John Wiley & Sons, 1989.
[20] 宋裕祺、林正偉、王傳輝,「有限元素法在鋼橋局部應力之分析應用與探討」,中華技術,第71期,pp.62~73,2006。
[21] 宋裕祺,高等橋梁工程講義,國立臺北科技大學土木與防災研究所,台北,2009。;
[22] B. E. P. Box and K. B. Wilson, “On the Experimental Attainment of Optimum Conditions”, Journal of the Royal Statistical Society. Series B(Methodological), Vol. 13, Issue 1, 1951, pp. 1-45.
[23] B. E. P. Box and K. B. Wilson, “Some New Three Level Designs for the Study of Quantitative Variables”, Technometrics, Vol. 2, Issue 4, 1960, pp. 455-475
[24] 馬秀蘭、吳德邦,統計學-以Microsoft Excel為例,新北市:新文京,2011。
[25] 謝政、李建平、湯澤瀅,非線性最優化,長沙:國防科技大學出版社,2003。
[26] 宗周紅、任伟新,橋梁有限元素模型修正和模型確認,北京:人民交通處版社,2012。
[27] D.C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, 2006.
[28] 陳國良、王煦法、庄鎮泉、王東昇,遺傳演算法及其應用,北京:人民郵電出版社,1996。
[29] 周明、孫樹洞,遺傳演算法原理及應用,北京:國防工業出版社,1999。
[30] 盧險峰,最佳化方法應用基礎,上海:同濟大學出版社,2003。
[31] 蘇進國,模糊遺傳演算法在橋梁耐震性能設計之應用與耐震維修補強生命週期成本最小化之研究,博士論文,國立臺北科技大學工程科技研究所,臺北,2008。
[32] 交通部,公路橋梁設計規範,交通技術標準規範公路類公路工程部,中華民國九十八年十二月。
[33] 王俊穎,混合式遺傳演算法應用於斜張橋及脊背橋鋼索預力最佳化設計與施工規劃之研究,博士論文,國立臺北科技大學工程科技研究所,臺北,2013。
[34] A. Berman and W.G. Flannelly, “Theory of Incomplete Models of Dynamic Structures”, AIAA Journal, Vol. 9, Issue 8, 1971, pp. 1481-1487.
[35] 財團法人國家實驗研究院國家地震工程研究中心,台86現24號橋地震災害橋梁修復工程安全評估服務工作-橋樑結構靜態與動態載重試驗報告,臺北:財團法人國家實驗研究院國家地震工程研究中心,2016。
[36] 交通部,公路鋼筋混凝土結構橋梁之檢測及補強規範,中華民國一百零三年十二月。
[37] 交通部,公路橋梁設計規範,交通技術標準規範公路類公路工程部,中華民國九十八年十二月。
[38] 邱毅宗,以長期監測資料為基準的橋梁最佳化結構識別及其在安全評估之應用,博士論文,國立臺北科技大學工程科技研究所,臺北,2016。
[39] T.Y. Chiu, T.K. Lin, H.H. Hung, Y.C. Sung and K.C. Chang, “Integration In-Situ Load Experiments and Numerical Modeling in a Long-Term Bridge Monitoring System on a Newly-Constructed Widened Section of Freeway in Taiwan”, Smart Structures and Systems, Vol. 13, No. 6, 2014, pp.1015-1039.
[40] Y.C. Sung, T. Miyasaka, T.K. Lin, C.Y. Wang and C.Y. Wang, “A Case Study on Bridge Health Monitoring Using Position Sensitive Detector Technology”, Structural Control and Health Monitoring, Vol. 19, No. 2, 2012, pp.295-308.
[41] Y.C. Sung, C.C Chen, and K.C. Chang, “An application Example under Meinong Earthquake of Bridge Inspection Module of a Life-cycle Based Bridge Management System”, The Scientific Practical Conference on Earthquake Engineering, Russia, 2016.
[42] Y.C. Sung, C.C. Chen, H.H. Hung, K.Y. Liu, M.C. Lai, C.C. Hsu and K.C. Chang, “Life-Cycle Based Management System for Inspection and Evaluation of Bridges”, International Association for Life-Cycle Civil Engineering (IALCCE2014), Japan, 2014.
[43] Z.K. Lee, C.C. Chen, H.H. Hung, Y.C. Sung and L.S. Lee, “Loading Tests and Long-Term Monitoring on Wugu-Yangmei Viaduct of Taiwan National Highway”, 5th Asia Conference on Earthquake Engineering, Taiwan, 2014.
[44] 李政寬、陳俊仲、洪曉慧、宋裕祺、李路生、陳君隆,「五楊高架橋車載試驗與長期光纖監測」,中華民國第十二屆結構工程研討會暨第二屆地震工程研討會,2014年8月27號。
[45] L. Trave-Massuyes, “Bridging Technologies for Diagnosis”, IFAC Proceedings Volumes, Vol. 45, Issue 20, 2012, pp. 361-372.
[46] T.K Au and X.T. Si, “Accurate time-dependent analysis of concrete bridges considering concrete creep, concrete shrinkage and cable relaxation”, Engineering Structures, Vol. 33, Issue 1, 2011, pp.118-126.
[47] Y.F. Liu, D.G. Lu and X.P. Fan, “Reliability updating and prediction of bridge structures based on proof loads and monitored data”, Construction and Building Materials, Vol. 66, 2014, pp. 795-804.
[48] I.N. Robertson, “Prediction of vertical deflections for a long-span prestressed concrete bridge structure”, Engineering Structures, Vol. 27, 2005, pp.1820-1827.
[49] A. Sagara and I. Pane, “A study on Effects of Creep and Shrinkage in High Strength Concrete Bridges”, Procedia Engineering, Vol. 125, 2015, pp.1087-1093.
[50] D.J. Zejak Approximate Methods for Analysing the Effects of Creeping and Shrinkage of Reinforced and Prestressed Concrete Constructions”, Procedia Engineering, Vol. 117, 2015, pp. 712-722.
[51] L.J. Parrott, “Basic Creep, Drying Creep and Shrinkage of a Mature Cement Paste After a Heat Cycle”, Cement and Concrete Research, Vol. 7, 1977, pp. 597-604.
[52] M.T. Yarnold and F.L. Moon, “Temperature-based structural health monitoring baseline for long-span bridges”, Engineering Structures, Vol. 86, 2015, pp. 157-167.
[53] O. Yapar, P.K. Basu, P. Volgyesi and A. Ledeczi, “Structural health monitoring of bridges with piezoelectric AE sensors”, Engineering Failure Analysis, Vol. 56, 2015, pp. 150-167.
[54] S.C. Bae, W.S. Jang, S. Woo and H.S. Do, “Prediction of WSN placement for bridge health monitoring based on material characteristic”, Automation in Construction, Vol. 35, 2013, pp. 18-27.
[55] T.H. Hyde, L. Xia and A.A. Becker, “Prediction of creep failure in aeroengine materials under multi-axial stress states”, International Journal of Mechanical Sciences, Vol. 38, Issue 4, 1996, pp.385-401 & 403.
[56] P. Havlasek and M. Jirasek, “Multiscale modeling of drying shrinkage and creep of concrete”, Cement and Concrete Research, Vol. 85, 2016, pp.55-74.
[57] 王顥霖,橋梁健康診斷量測技術之研究,碩士論文,國立中央大學土木工程所, 桃園,2011。
[58] 石靖嵐,乾縮潛變對新舊橋樑連接之影響,碩士論文,國立交通大學土木工程學系,新竹,2006。
[59] F. Mola and L.M. Pellegrini, “The new model for creep of concrete in FIP Model Code 2010”, 37th Conference on Our World in Concrete & Structures, Singapore, 2012.
[60] 台灣世曦工程顧問股份有限公司,台86線24號橋地震災損橋梁復建及耐震補強工程,台灣世曦工程顧問股份有限公司,2016。
[61] 廖文正、林致淳、詹穎雯,「台灣混凝土彈性模數建議公式研究」,結構工程,第三十一卷,第三期,民國105年,第5-31頁。
論文全文使用權限:不同意授權