現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:先撐管冪及TSP等輔助工法於新奧工法隧道施工之運用實務探討 [以論文名稱查詢館藏系統]
論文英文名稱:Use and Discussion of Pipe Umbrella Roofing and TSP in Construction of NATM [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木工程系土木與防災碩士班(碩士在職專班)
畢業學年度:105
畢業學期:第一學期
出版年度:105
中文姓名:劉泰儀
英文姓名:Tai-Yi Liu
研究生學號:103428506
學位類別:碩士
語文別:中文
口試日期:20170112
論文頁數:130
指導教授中文名:倪至寬;陳水龍
指導教授英文名:James C. Ni;Shong-Loong Chen
口試委員中文名:倪至寬;陳水龍;黃然;陳卓然
中文關鍵詞:新奧工法管冪工法隧道內震波測試隧道計測
英文關鍵詞:NATMPipe Umbrella RoofingTunnel Seismic PredictionConvergence of tunnel
論文中文摘要:本研究論文之主題為目前山岳隧道施工之主流工法-新奧地利隧道施工法,簡稱新奧工法(New Austrian Tunneling Method, NATM)及相關之輔助探測及補強工法,例如先撐管冪工法(Pipe Umbrella Roofing)、隧道前方震波探測(Tunnel Seismic Prediction, TSP)及計測系統(Monitoring System)等施工方法運用實務之研究及探討。透過對這些工法施工流程與細節之研究,了解於不同地層與岩盤結構間,其施工之差異性,並統計分析其一次襯砌完成後,不同岩盤對隧道穩定收斂時間之影響。
為確保隧道施工之安全,本論文藉由對隧道前方震波探測技術之探討,作為隧道開挖中對前方地質預先了解之資訊,此一前進探測之成果,為後續隧道鑽炸開挖及支保架設時,選擇其最適當配置的重要參考;另外,當隧道施工時遇見斷層破碎帶、岩盤剪裂帶、泥岩層、主要地下水層及崩積層…等,必要的輔助工法,例如先撐管冪工法,亦是決定隧道施工成敗的重要因素;這些隧道施工及輔助工法於開挖完成後,佐以後續對隧道之計測結果,例如收斂釘、岩盤伸縮儀、沉陷觀測點及計測岩栓…等,可以完整分析出隧道整體施工之變形及收斂情況,作為後續二次襯砌施工之參考。
本研究論文例舉目前仍進行施工之實際隧道工程-東部某公路之隧道新建工程為案例,來印證前面所研究之各項施工技術,依據此一案例工程TSP探測結果,其里程0K+819至1K+090間之崩積層區域被成功探測出來。經採用先撐管冪補強工法施作之後,此一崩積層區域之收斂釘最大變形量為+4mm至-10.5mm,與主要為大理岩區域之收斂釘最大變形量為+5.3mm至-7.3mm,以及主要為片麻岩區域之收斂釘最大變形量為+5.6mm至-9.1mm,相當接近;另此一崩積層區域之沉陷觀測點最大沉陷量為+4.3mm至-10.3mm,與主要為大理岩區域之沉陷觀測點最大沉陷量為+3mm至-5.7mm,以及主要為片麻岩區域之沉陷觀測點最大沉陷量為+5.7mm至-6mm,亦相當接近。而隧道變形至穩定的時間,於崩積層區域約為47.5天(約3.3D),於大理岩區域約為29.3天(約2.1D),於片麻岩區域約為41.9天(約3D),與一般採新奧工法施工之隧道變形收斂之穩定之情況(1.5D~3D)亦相符。
由此一案例工程之隧道前方探測或開挖後之計測結果,我們可以印證無論是TSP探測或是先撐管冪補強工法,均發揮其施作成效,可知配合先進輔助工法進行新奧工法隧道之施工,能更快速、更安全,且能獲得更優良且精確之施工品質。
論文英文摘要:The main theme of this paper is research and discussion of tunnel construction by the New Austrian Tunneling Method (hereinafter referred to as NATM) accompanied with the Pipe Umbrella Roofing method, Tunnel Seismic Prediction method (hereinafter referred to as TSP) and Monitoring System. By investigating the sequences and details of these construction methods, we can understand the results and differences of tunnel construction in different soil condition. The deformation and convergence of the excavated tunnel after installation of premier lining will be also reached by understanding of these methods.
For Safety of tunnel construction works, we use TSP to find the soil or rock condition and water contents in front of the excavation surface of the tunnel. Based on the investigation results of TSP, some equipment and materials for Pipe Umbrella Roofing could be arranged to site in time when the results indicate that poor soil condition on high water contents area is close to the excavation surface. It could also provide information for support type of premier lining. The records of Monitoring System, including convergence surveying, settlement surveying, Extensometers, and Rock Anchors, are important data as construction reference of the secondary lining.
In this paper, the author takes a tunnel project that is under construction as an example to verify all researched results in these methods. The bad soil condition between 0K+819 and 1K+090 was successfully detected by TSP. After reinforcing by the Pipe Umbrella Roofing in the crown of this bad soil condition area, the maximum deformation of convergence is from +4mm to -10.5mm. This result is close to the result of +5.3mm to -7.3mm in marble area and +5.6mm to -9.1mm in gneiss area. Also, the maximum settlement of crown of this bad soil condition area is from +4.3mm to -9.3mm. This result is close to the result of +3mm to -5.3mm in marble area and +5.7mm to -6mm in gneiss area as well. In addition, the average duration of deformation goes to stable in bad soil condition area is 47.5 days (3.3D), in marble area is 29.3 days (2.1D), and in gneiss area is 41.9 days (3D). These results are very similar to normal experiences of NATM tunnels.
The author expects this paper would be a good reference document for design and construction works of NATM tunnel in the future.
論文目次:中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 viii
第一章 緒論 1
1.1 研究背景、動機與目的 1
1.2 研究範圍與限制 2
1.3 研究步驟流程與方法 2
1.3.1 本論文研究步驟 2
1.3.2 本論文研究流程 4
1.3.3 本論文研究方法 5
第二章 文獻回顧 7
2.1新奧工法施工回顧 7
2.1.1 傳統隧道施工概說 7
2.1.2 新奧工法之發展 8
2.1.3 新奧工法施工概述 8
2.2 先撐管冪工法施工細部說明 9
2.2.1 先撐管冪工法概說 9
2.2.2 先撐管冪施工流程圖 10
2.2.3 先撐管冪鋼管埋設施工步驟 12
2.2.4 先撐管冪灌漿注入施工 14
2.2.5 先撐管冪使用材料 18
2.3 管冪工法回顧 20
2.3.1 國外工程運用管冪工法情況 21
2.3.2 國內工程運用管冪工法情況 36
2.4 隧道施工中之變形收斂研究回顧 39
第三章 TSP國外施工實例探討 51
第四章 研究成果-實際案例探討 59
4.1 案例工程概述 59
4.2 工址地盤岩盤分類 61
4.2.1 各類岩盤開挖支撐系統說明 61
4.2.2 岩盤分類及地質記錄 64
4.3 隧道前方TSP探測 64
4.3.1 TSP探測一般說明 64
4.3.2 TSP儀器佈設區域地質說明 68
4.3.3 TSP儀器及探測執行 69
4.3.4 TSP探測資料擷取及判讀 71
4.3.5 TSP探測成果推估 77
4.3.6 TSP探測成果比對與結論 81
4.4 先撐管冪施工情況 85
4.4.1 現場輪進施工進度概述 85
4.4.2 和中斷層位置及抽坍說明 86
4.4.3 先撐管冪施工 88
4.5 隧道計測及變形收斂情形 101
4.5.1 南口北上線里程4k+217計測結果(大理岩段) 105
4.5.2 南口南下線里程4k+553計測結果(片麻岩段) 112
4.5.3 北口北上線里程0k+820計測結果(崩積層段) 118
4.5.4 計測結果彙整統計 120
第五章 結論與建議 125
5.1 結論 125
5.2 建議 126
參考文獻 127
論文參考文獻:1. Rabcewicz, L. “The New Austrian Tunnelling Method.”Water Power, Nov. 1964, pp. 453-457.
2. Rabcewicz, L., and T. Golser. “Application of the NATM to the Underground Works at Tarbela.”Water Power, Mar. 1972, pp. 88-93.
3. Franz Pacher, ”Deformation Measurements in the Test Tunnel as a Means of Exploring the Mountain Behavior and the Dimensioning of the Expansion, Rock Mechanics and Engineering Geology.”, 1964
4. Lunardi, P. “Design and Construction of Tunnels. Springer.”, 2008.
5. Holloway L. and J. Kyerbol, ”Completion of the world’s largest soft-ground tunnel bore”, USA, Transportation Research Record 1150, 1988, pp. 1-10.
6. Fillibeck J. and Vogt N., “Shotcrete excavations for the Munich subway–comparison of different methods of face support in settlement sensitive areas”, 6th International Symposium Geotechnical Aspects of Underground Construction in Soft Ground, Shanghai, 2008.
7. Fulvio Tonon, “ADECO as an Alternative to NATM: 22 m Wide 14 m High, Full Face Tunnel Excavation in Clays”, University of Texas, Austin, Texas, 2010, pp.98-108.
8. Fulvio Tonon, “ADECO full-face tunnel excavation of two 260 m2 tubes in clays with sub-horizontal jet-grouting under minimal urban cover”, University of Texas, Austin, Texas, 2010, pp.253-266.
9. Guenther Volkmann, “Application of the Pipe Umbrella Support System at the Koralm Tunnel KAT 3”, Graz University of Technology, 2015, pp. 313-315, 318-319.
10. Herbert Walter, “Design of the primary support of the NATM excavation of the metro station Taborstraße in Vienna based on a nonlinear 3-D-FE-model”, IGT – Geotechnik und Tunnelbau ZT-GmbH Mauracherstraße 9, A-5020 Salzburg, pp. 2-12.
11. Steven Coulter and C. Derek Martin, “Ground Deformations Above a Large Shallow Tunnel Excavated Using Jet Grouting.”, 2004, pp. 155-160
12. Daniel T.C. Yao and Chih-Hung Wu, “Ground Movement Analysis of Pipe Roof Construction in Soft Clay”, Taipei, pp. 1-6.
13. Steven Coulter and C. Derek Martin, “Ground Deformations Above a Large Shallow Tunnel Excavated Using Jet Grouting”, Edmonton, UROCK 2004 and 53rd Geomechanics Colloquy, 2004, pp.155-160.
14. G. Volkmann and W. Schubert, “A load and load transfer model for pipe umbrella support”, Graz, Graz University of Technology, 2010, pp. 379-382.
15. G. Volkmann and F. Krenn, “BACK-CALCULATED INTERACTING LOADS ON PIPES OF PIPE UMBRELLA SUPPORT SYSTEMS”, Pasching, Linz, pp. 1-8.
16. R.R.Osgoui, A. Pol & M. Pescara, “Challenging features in design and execution of a low overburden underpass - A case history from Malaysia: PLUS North-South Highway”, Italy, Geodata Engineering SpA., 2011, pp. 1-9.
17. Guenther Volkmann, “Development of State-of-the-Art Connection Types for Pipe Umbrella Support Systems”, Graz University of Technology, 2014, pp. 333-338.
18. M. F. A. Latif, M. Selamat, M. A. M. Ismail and S. M. Ng, “Effects of Pipe Roof Supports and the Tunnels Excavation on the Ground Settlement”, Pinang, Malaysia, School of Civil Engineering, USM, 2012, pp.1045-1054.
19. G. Volkmann and W. Schubert, “Effects of Pipe Umbrella Systems on the Stability of the Working Area in Weak Ground Tunneling”, Graz, Graz University of Technology, 2009, pp. 1-5.
20. H. Wang and J. Jia, “Face Stability Analysis of Tunnel with Pipe Roof Reinforcement Based on Limit Analysis”, Dalian, China, Dalian University of Technology, 2009, pp. 1-14.
21. Vojtech Gal and Kurt Zeidler, “Pre-Support Measures for Shallow NATM Tunneling in Urban Settings”, Ashburn, Virginia, Gall Zeidler Consultants, LLC, pp. 152-162.
22. P. Croce, G. Modoni and G. Russo, “Jet-Grouting Performance in Tunnelling”, University of Cassino, 2004, pp. 1-12.
23. Thomas Dickmann and Bernhard K. Sander, “Drivage-Concurrent Tunnel Seismic Prediction (TSP)”, Switzerland, Vereina North Tunnel Mega- Project, 1996, pp. 406-411.
24. S. LÜTH, A. J. RECHLIN, R. GIESE, J.TZ AVARAS, K. GROSS, S. BUSKE, S. JETSCHNY, D. DENIL and T. BOHLEN, “Seismic prediction ahead of a tunnel face - Modeling, field surveys, geotechnical interpretation –“, Japan, Japanese Committee for Rock Mechanics, 2008, pp. 47-51.
25. W. Lu, J. Wu, S. L, Z. Xu, L. L. Zhang and L. Zhou, “Application study of the Tunnel Seismic Prediction method in Qiyueshan tunnel”, Shandong, 2015, pp. 1725-1729.

26. J. Guo and C. Luog, “Application of Tunnel Seismic Image Approach to the Advanced Geological Prediction for Tunnel”, Pingdingshan, Henan, China, Henan University of Urban Construction, 2014, pp. 879-885.
27. Thomas Dickmann and Bernhard K. Sander, “Drivage-Concurrent TunnelSeismic Prediction (TSP)”, 1996, pp.406-411
28. P. Perazzelli, T. Rotonda, D. Boldini, A.M. Ajmone-Cat and P.M. Gianvecchio, “Analysis of convergence data and 3D numerical modelling of tunnels excavated in fine-grained soils”, Rome, Dept. of Structural and Geotechnical Engineering, Sapienza University., 2012
29. Y. Wu And X. Xi, “Information Monitoring on Surrounding Rock of Tunnel and Its Application”, Qingdao, Shan Dong University of Science and Technology, 2010, pp. 207-215.
30. J. Zhao, L. Liu and G. Wang, “Deformation Monitoring and Back Analysis on Surrounding Rock Mechanics Parameters for Metro Construction with Mining Method in Dalian”, Dalian, 2013, pp. 197-203.
31. Asif Riaz, “Tunnel Convergence Monitoring for Nahakkai Tunnel - From Concept to Implementation”, National University of Science and Technology, 2015, pp. 1-25.
32. C. Dinis da Gama, “A method for continuous monitoring of tunnel deformations during construction and service phases”, Salzburg, Austria, EUROCK, 2004
33. Fecker & Partner, “Convergence Measuring Instruments”, Germany, Geotechnisches Ingenieurbüro, 2004
34. 倪至寬,地盤灌漿工程實務,臺北市:詹氏書局,2010,參考全文。
35. 郭奇正、劉弘祥,先撐管幕工法應用於台灣隧道工程案例探討,台北市,地工技術雜誌-第66期,1998,第25-36 頁。
36. 張吉佐、侯秉承、李民政、李怡德、張博翔,臺灣地區岩體分類與隧道支撐系統之建立,中興工程,1996,第1-12頁。
37. 新亞建設開發股份有限公司,先撐管冪施工計畫書,台北市,新亞建設開發股份有限公司,2015,參考全文。
38. 新亞建設開發股份有限公司,隧道計測計畫書,台北市,新亞建設開發股份有限公司,2015,參考全文。
39. 新亞建設開發股份有限公司,隧道內震波探測計畫書,台北市,新亞建設開發股份有限公司,2015,參考全文。
40. 陳榮起,隧道施工講義,台北市,新亞建設開發股份有限公司,參考全文。
41. 張郁慧、熊谷鎰、吳定恩,復興北路穿越機場地下道工程與涵體無限自走工法,台北市,台北市政府新建工程處,第1-33頁。
42. 詹坤庭,臺北市復興北路穿越松山機場地下道工程ESA工法,台北市,大陸工程公司技術研究發展部,第16-22頁。
43. 姚大鈞、吳志宏、張郁慧,軟弱粘土中管幕工法之設計與分析,臺北市:亞新工程顧問股份有限公司,第2-4頁。
44. 詹益湘、李彪,隧道內震波探測在東部某隧道之應用,宜蘭市,第十四屆海峽兩岸隧道與地下工程學術與技術研討會,2015,T-28-1頁。
45. 劉弘祥、黃崇仁、張吉佐,隧道工程止漏樹脂灌漿技術,台北市,中興工程顧問股份有限公司,2007,參考全文。
46. 周允文、吳慶輝、郭育安,蘇花改觀音隧道遭遇地質弱帶施工案例探討,台北市,台灣世曦工程顧問股份有限公司,2014,參考全文。
論文全文使用權限:同意授權於2020-02-07起公開