現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:結合DRASTIC及混合型農業土地利用含水層脆弱度評估模式之發展-以濁水溪沖積扇為例 [以論文名稱查詢館藏系統]
論文英文名稱:Developing a Composite Model Combining DRASTIC with Mixed Agricultural Land Use in Choushui River Alluvial Fan [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木工程系土木與防災碩士班
畢業學年度:104
畢業學期:第二學期
中文姓名:謝致恆
英文姓名:Chih-Heng Hsieh
研究生學號:103428071
學位類別:碩士
語文別:中文
口試日期:2016/07/29
指導教授中文名:陳世楷
口試委員中文名:陳世楷;張誠信;王聖瑋;高雨瑄
中文關鍵詞:含水層脆弱度地下水DRASTIC硝酸鹽氮水稻
英文關鍵詞:Aquifer VulnerabilityGroundwaterDRASTICNitrate-NPaddy
論文中文摘要:含水層脆弱度評估為地下水資源經營管理之有效工具,用以控制潛在之汙染。濁水溪沖積扇位於台灣中部地區,為台灣重要農業用地,該地區極為複雜之農業土地利用與輪作制度,使地下水資源經營管理更為困難。本研究針對濁水溪沖積扇淺層地下含水層進行脆弱度評估,以美國EPA 所發展之DRASTIC模式為基礎,藉由將農業土地利用納入作為新考量之參數,將農作物種類、施肥狀況及灌溉制度一併納入此參數中,以反應研究區域內極為複雜之農業土地利用情況並計算污染潛勢值,並由污染潛勢程度分級劃定汙染風險潛勢區。為驗證所發展新模式之預測準確度,本研究利用此區域觀測井網硝酸鹽氮監測值進行驗證。根據使用原生DRASTIC模式分析結果顯示,部份未受污染井位之潛勢值明顯高估,扇央北區尤為嚴重,此區屬於彰化二期作水稻種植區,雖長期施用化學肥料,但水田還原環境有利於脫硝作用,使其不易汙染地下水源,故此區域應屬污染潛勢較低地區。加入農業土地利用參數後,可以反應此區域較低之脆弱度,而未影響其他高硝酸鹽氮濃度地區之預測率,整體而言可有效提升全區域整體預測準確率,使結果更符合實際污染情況。研究成果可提供作為地下水汙染監測井網及相關地下水保育措施之依據。
論文英文摘要:Aquifer vulnerability assessment is considered an effective tool in groundwater management which is necessary for controlling potential pollution. The Choushui River alluvial fan, located on central Taiwan, is an area of mixed agricultural region, where complex crop patterns and various rotational cropping schemes increase the difficulties in groundwater resource management. The aim of this study is to propose an integrated methodology to assess shallow groundwater vulnerability by including land-use impact on groundwater potential pollution. The original groundwater vulnerability methodology DRASTIC, developed by USEPA, was modified by adding a land-use parameter in order to assess groundwater vulnerability under intense agricultural activities. The crop pattern, fertilizer application rate, and irrigation method were taken into account in the land-use parameter. To examine the prediction capacity of pollutions for the modified DRASTIC model, various risk categories of contamination potentials were compared with observed nitrate-N obtained from groundwater monitoring network. It was found that for the original DRASTIC vulnerability map, some areas with low nitrate-N concentrations are covered within the high vulnerability areas, especially in the northern part of mid-fan areas, where rice paddies are planted for two crop seasons per year. This may due to the paddy environment could reduce the nitrate-N concentration by denitrification effect. The modified model was proved to be capable of increasing the precise of prediction in this area by reducing the vulnerability in this area but not affect the other high vulnerability areas. The results can provide a basis for groundwater monitoring network design and effective preserve measures formulation regarding the state of the environment.
論文目次:摘 要 i
ABSTRACT iii
謝 誌 v
目 錄 vi
表目錄 ix
圖目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 研究目的 2
1.3 研究架構 3
第二章 文獻回顧 5
2.1 DRASTIC模式文獻探討 5
2.2 各土地利用淨補注量文獻探討 6
2.3 區域地理統計應用於含水層脆弱度評估 8
第三章 材料與方法 10
3.1 研究區域概述 10
3.1.1 氣候概況 10
3.1.2 水文地質概述 11
3.1.3 河川 14
3.1.4 土地使用類別概述 14
3.1.5 輪作制度 14
3.1.6 濁水溪沖積扇地下水監測站 16
3.2 DRASTIC模式 17
3.2.1 地下水位深度(D) 19
3.2.2 淨補注量(R) 20
3.2.3 含水層介質(A) 23
3.2.4 土壤介質(S) 25
3.2.5 地形(T) 26
3.2.6 未飽和層影響(I) 27
3.2.7 水力傳導係數(C) 28
3.2.8 DRASTIC模式污染潛勢值 29
3.3 區域地理統計 30
3.3.1 區域化變數理論 30
3.3.2 半變異元分析 32
3.3.3 半變異元模式 35
3.3.4 交叉驗證 36
3.3.5 空間異向性 37
3.4 敏感度分析 39
3.4.1 單一參數敏感度分析 39
3.4.2 圖層刪去敏感度分析 39
3.5 相關性分析 40
3.5.1 Pearson積差相關係數 40
3.5.2 Spearman等級相關係數 41
第四章 結果與討論 42
4.1 DRASTIC各參數等級分佈圖 42
4.1.1 地下水位深度(D) 43
4.1.2 淨補注量(R) 45
4.1.3 含水層介質(A) 46
4.1.4 土壤介質(S) 50
4.1.5 地形(T) 53
4.1.6 未飽和層影響(I) 54
4.1.7 水力傳導係數(C) 57
4.2 DRASTIC污染潛勢指標 60
4.3 地下水污染潛勢區域劃定與硝酸鹽氮污染比較 62
4.3.1 敏感度分析 64
4.3.2 區域性敏感度分析 65
4.4 DRASTIC模式修正 66
4.4.1 修改權重 67
4.4.2 增加參數(農業土地利用) 69
4.5 相關性分析 74
4.6 綜合討論 76
第五章 結論與建議 79
5.1 結論 79
5.2 建議 81
參考文獻 82
附錄一 90
論文參考文獻:1. Aelion, C. M., Conte, B. C., "Susceptibility of Residential Wells to VOC and Nitrate Contamination" Environmental Science and Technology, 38, 2004, pp. 1648-1653.
2. Agency for Toxic Substances and Disease Registry, "Toxicological Profile for Nitrate and Nitrite (Draft for Public Commont)", Health and Juman Services, U.S., 2015.
3. Al-Adamat, R. A. N., Foster, I. D. L., Baban, S. M. J., "Groundwater vulnerability and risk mapping for the Basaltic aquifer of the Azraq basin of Jordan using GIS, Remote sensing and DRASTIC" Applied Geography, 23(4), 2003, pp. 303-324.
4. Aller, L., Bennett, T., Lehr, J. H., Petty, R. J., Hackett, G., "DRASTIC: A Standardized System for Evaluating Ground Water Pollution Potential Using Hydrogeologic Settings.", Oklahoma, 1987.
5. Armengol, S., Sanchez-Vila, X., Floch, A., "An approach to aquifer vulnerability including uncertainty in a spatial random function framework" Journal of Hydrology, 517, 2014, pp. 889-900.
6. Baalousha, H., "Assessment of a groundwater quality monitoring network using vulnerability mapping and geostatistics: A case study from Heretaunga Plains, New Zealand" Agricultural Water Management, 97(2), 2010, pp. 240–246.
7. Babiker, I.S., Mohamed, M.A.A., Hiyama, T., Kato, K., "A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan", Science of the Total Environment, 345, 2005, pp. 127-140.
8. Bai, L., Wang, Y., Meng, F., "Application of DRASTIC and extension theory in the groundwater vulnerability evaluation" Water and Environment Journal. 26(3), 2012, pp. 381-391.
9. Barbash, J.E., Resek, E.A., "Pesticides in Ground water: Distribution, Trends, and Governing Factors." Ann Arbor Press, Michigan, USA, 1996.
10. Beynen, P. E. V., Niedzielski, M. A., Jelinska, E. B., Alsharif, K., Matusick, J., " Comparative study of specific groundwater vulnerability of a karst aquifer in central Florida" Applied Geography, 32, 2012, pp. 868-877.
11. Bhadra, B. K., Kumar, S., Paliwal, R., "GIS-based assessment of non-equilibrium pattern between groundwater recharge and irrigation draft in a semi-arid region of Rajasthan, India" Journal of Arid Land, 8(2), 2016, pp. 184-196.
12. Chen, S. K., Jang, C. S., Peng, Y. H., "Developing a probability-based model of aquifer vulnerability in an agricultural region" Journal of Hydrology, 486, 2013, pp. 494-504.
13. Chen, S.K., Liu, C.W., "Analysis of water movement in paddy rice fields (I) experimental studies", Journal of Hydrology, 260, 2002, pp. 206-215.
14. Chen, W. F., Liu, T. K., "Dissolved oxygen and nitrate of groundwater in Choshui Fan-Delta, western Taiwan" Environmental Geology, 44(6), 2003, pp. 731-737.
15. Chowdary, V. M., Rao, N. H., Sarma, P. B. S., "A coupled soil water and nitrogen balance model for flooded rice fields in India" Agriculture, Ecosystems and Environment, 103, 2004, pp. 425-441.
16. Chung, S. O., Kim, H. S., Kim, J. S., "Model development for nutrient loading from paddy rice fields" Agricultural Water Management, 62, 2003, pp. 1-17.
17. Deutsch, C. V., Journel, A. G., "Geostatistical Software Library and User’s Guide, Second Edition.", New York : Oxford, 1998.
18. Furuno, K., Kagawa, A., Kazaoka, O., Sakai, Y., Kusuda, T., Nirei, H., "Groundwater management based on monitoring of land subsidence and groundwater levels in the Kanto Groundwater Basin, Central Japan" IAHS-AISH Publication, 372, 2015, pp. 53-57.
19. Gundogdu, K. S., Guney, I., "Spatial analyses of groundwater level using universal kriging" Journal of Earth System Science, 116(1), 2007, pp. 49-55.
20. Jang, C. S., Chen, S. K., "Integrating indicator-based geostatistical estmation and aquifer vulnerability of nitrate-N for establishing groundwater protection zones" Journal of Hydrology, 523, pp. 441-451.
21. Jang, C. S., Liu, C. W., "Contamination potential of nitrogen compounds in the heterogeneous aquifers of the Choushui River alluvial fan, Taiwan" Journal of Contaminant Hydrology, 79(3-4), 2005, pp. 135-155.
22. Jang, C.S., Liu, C.W., "Geostatistical analysis and conditional simulation for estimating the spatial variability of hydraulic conductivity in the Choushui River alluvial fan, Taiwan", Hydrological Processes, 18(7), 2004, pp. 1333-1350.
23. Jang, C. S., Lin, C. W., Liang, C. P., Chen, J. S., "Developing a reliable model for aquifer vulnerability" Stochastic Environmental Research and Risk Assessment, 30(1), 2016, pp. 175-187.
24. Journel, A.G., Huijbregts, C.J., " Mining Geostatistics. " London: Academic Press, 1978.
25. Kaliraj, S., Chandrasekar, N., Peter, T. S., Selvakumar, S., Magesh, N. S., "Mapping of coastal aquifer vulnerable zone in the south west coast of Kanyakumari, South India, using GIS-based DRASTIC model" Environmental Monitoring and Assessment, 187(1), 2015, pp. 1-27.
26. Kao, Y.H., Liu, C.W., Wang, S.W., Lee, C.H., "Estimating mountain block recharge to downstream alluvial aquifers from standard methods", Journal of Hydrology, 426-427, 2012, pp. 93-102.
27. Kumar, V., "Optimal contour mapping of groundwater levels using universal kriging – A case study" Hydrological Sciences Journal, 52(5), 2007, pp. 1038-1050.
28. Li, R., Merchant, J. W., Chen, X. H., " A geospatial Approach for Assessing Groundwater Vulnerability to Nitrate Contamination in Agricultural Settings" Water, Air, and Soil Pollution, 225(12): 2214, 2014.
29. Lima, M. L., Zelaya, K., Massone, H., " Groundwater Vulnerability Assessment Combining the Drastic and Dyna-Clue Model in the Argentine Pampas" Environmental Management, 47(5), 2011, pp. 828-839.
30. Liu, C. W., Chen, S. K., Jang, C. S., "Modelling water infiltration in cracked paddy field soil" Hydrological Processes, 18(13), 2004, pp. 2503-2513.
31. Liu, C.W., Chen, S.K., Jou, S.W., Kuo, S.F., "Estimation of the infiltration rate of a paddy field in Yun-Lin, Taiwan", Agricultural System, 68, 2001, pp. 45-54.
32. McLay, C. D. A., Dragten, R., Sparling, G., Selvarajah, N., "Predicting groundwater nitrate concentrations in a region of mixed agricultural land use: a comparison of three approaches" Environmental Pollution, 115, 2001, pp. 191-204.
33. Nakasone, H., Kuroda, H., Kato, T., Tabuchi, T., "Nitrogen removal from water containing high nitrate nitrogen in a paddy field (wetland)" Water Science and Technology, 48(10), 2003, pp. 209-217.
34. Neshat, A., Pradhan, B., Javadi, S., "Risk assessment of groundwater pollution using Monte Carlo approach in an agricultural region: An example from Kerman Plain, Iran" Computers, Environment and Urban Systems, 50, 2015, pp. 66-73.
35. Neshat, A., Pradhan, B., Shafri, H. Z. M., "An Integrated GIS Based Statistical Model to Compute Groundwater Vulnerability Index for Decision Maker in Agricultural Area" Journal of the Indian Society of Remote Sensing, 42(4), 2014, pp. 777-788.
36. NRC(National Research Council), "Ground Water Vulnerability Assessment: Predictive Relative Contamination Potential Under Conditions of Uncertainty."National Academy Press, Washington, DC. 1993, pp. 42-63.
37. Panagopoulos, G. P., Antonakos, A. K., Lambrakis, N. J., "Optimization of the DRASTIC method for groundwater vulnerability assessment via the use of simple statistical method and GIS" Hydrogeology Journal, 14, 2006, pp. 894-911.
38. Piscopo, G., "Groundwater Vulnerability Map explanatory notes-Castlereagh Catchment." NSW, Department of land and Water Conservation, Australia, 2001.
39. Saidi, S., Bouri, S., Dhia, H. B., "Groundwater vulnerability and risk mapping of the hajeb-jelma aquifer (central tunisia) using a gis-based drastic model" Environmental Earth Sciences, 59(7), 2009, pp. 1579-1588.
40. Secynda, S., Collin, M. L., Melloul, A. J., "Groundwater vulnerability assessment using a composite model combining DRASTIC with extensive agricultural land use in Israel’s Sharon region" Journal of Environmental Management, 54, 1998, pp. 39-57.
41. Shirazi, S. M., Imran, H. M., Akib, S., Yusop, Z., Harun, Z. B., " Groundwater vulnerability assessment in the Melaka State of Malaysia using DRASTIC and GIS techniques" Environmental Earth Sciences, 70(5), 2013, pp. 2293-2304.
42. Thapinta, A., Hudak, P.F., "Use of geographic information systems for assessing groundwater pollution potential by pesticides in Central Thailand." Environment International, 29(1), 2003, pp. 87-93.
43. Theodossiou, N., "Evaluation of the distribution of hydraulic head in an aquifer using the Kriging method" Scientific Journal of the Hellenic Hydrotechnical Association – Hydrotechnika, 9, 1999, pp. 3-14.
44. Vaezihir, A., Tabarmayeh, M., " Total vulnerability estimation for the Tabriz aquifer(Iran) by combining a new model with DRASTIC" Environmental Earth Sciences, 74(4), 2015, pp. 2949-2965.
45. Vithanage, M., Milunthan, T., Pathmarajah, S., Arasalingam, S., Manthrithilake, H., " Assessment of nitrate-N contamination in the Chunnakam aquifer system, Jaffna Peninsula, Sri Lanka" SpringerPlus, 3(1), 2014, pp. 1-8.
46. Vrba, J., Zaporozec, A., "Guidebook on mapping groundwater vulnerability." International Association of Hydrogeologists, International contributions to hydrogeology, v. 16, 1994.
47. Wade, A. J., Black, E., Braushaw, D. J., EI-bastawesy, M., Holmes, P. A. C., Butterfield, D., Nuimat, S., Jamjoum, K., "A model-based assessment of effects of projected climate change on the water resources of Jordan" Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1931), 2010, pp. 5151-5172.
48. Weyer, P. J., Cerhan, J. R., Kross, B. C., Hallberg, G. R., Kantamneni, J., Breuer, G., Jones, M. P., Zheng, W., Lynch, C. F., "Municioal Drinking Water Nitrate Level and Cancer Risk in Older Woman: The Iowa Women’s Health Study" Epidemiology, 12(3), 2001, pp. 327-338.
49. Witkowski, A. J., Kowalczyk, A., Vrba, "Selected papers from the Groundwater Vulnerability Assessment and Mapping International Conference." Ustron, Poland, 2004.
50. Zhang, R., Hamerlinck, J. D., Gloss, S. P., Munn, L., "Determination of Nonpoint-Source Pollution Using GIS and Numerical Models" Journal of Environmental Quality, 25(3), 1995, pp. 411-418.
51. 中央氣象局,「1897-2008年臺灣氣候變化統計報告」,2009,第5-7頁。
52. 內政部國土測繪中心入口網,http://lui.nlsc.gov.tw/LUWeb/Home/Content_Home.aspx,2009。
53. 方政順,「嘉南平原地區地下水污染潛勢之研究」,碩士論文,國立成功大學,台南,2009。
54. 中興工程顧問股份有限公司,「濁水溪中游地區地下水補注調查與評估」,經濟部水資源局八十五年度地下水觀測網暨地層下陷防治計畫成果發表會成果報告集,1997,第55-72頁。
55. 台糖公司新營總廠,「地下水觀測網之建立及運作管理」,經濟部水資源局,1996。
56. 台灣大學,「雲林內陸地層下陷地區地下水抽水機制之探討與評估」,經濟部水利署委辦計劃報告,2011。
57. 台灣省農田水利會聯合會,「農田水利會技術人員訓練教材灌溉管理類合訂本」,1994,第二冊,第25頁。
58. 行政院農業委員會,http://gis.rchss.sinica.edu.tw/gps/wp-content/uploads/2012/02/20120201_twdtm_asterV2_30m-TM2_TWD97.rar,2012。
59. 行政院農業委員會農田水利入口網,http://doie.coa.gov.tw/index.asp,2006。
60. 交通部中央氣象局入口網,「農業氣象觀測網旬資料」,http://www.cwb.gov.tw/V7/climate/agri/agri_10day.htm,2014。
61. 吳功顯、鄭秋桂,「台灣養殖漁業用水之分析研究-水資源規劃系統分析之一」,七十三年度經濟部水資源統一規劃委員會補助計畫報告,1985。
62. 林建文,「濁水溪沖積扇地下水硝酸鹽氮污染潛勢評估與預測模式建立」,碩士論文,國立中央大學,桃園,2009。
63. 陳世楷、蔡誠斌、廖國任、謝致恆,「因應環境與社會變遷之穩定供水與減災總合政策研究(Ⅲ)-子計畫:氣候變遷對區域淺層土壤水與地下水系統受農業用水操作之季節性變化分析與因應策略」,一零三年度行政院國家科學委員會整合行計畫報告,2014。
64. 梁承偉,「屏東平原地下水硝酸鹽氮汙染潛勢評估」,碩士論文,輔英科技大學,高雄,2013。
65. 陳冠宇,「應用地理資訊系統與因子分析方法於地下水補注潛勢評估-以濁水溪沖積扇為例」,碩士論文,國立交通大學,新竹,2010。
66. 張俊翔,「高雄平原地區抽水引致污染潛勢評估」,碩士論文,國立中央大學,桃園,2013。
67. 陳進發,「未飽和層土壤水平衡模式解析及其應用之研究」,博士論文,國立成功大學,台南,2002。
68. 彭怡惠,「機率為基礎含水層脆弱度評估模式之發展-以濁水溪沖積扇為例」,碩士論文,國立台北科技大學,台北,2012。
69. 黃緒瑩,「高雄平原地區地下水污染潛勢之研究」,碩士論文,國立成功大學,台南,2007。
70. 葉信富、李振誥、陳忠偉、張格綸,「評估蒸發皿係數以推估台灣南部地區蒸發散量之研究」,農業工程學報,第五十四卷,第三期,2008,第27-35頁。
71. 葉峻麟,「非點源污染監測分析-以集水區水稻田為例」,碩士論文,國立台北科技大學,台北,2012。
72. 經濟部中央地質調查所,「台灣地區地下水觀測網第一期計劃濁水溪沖積扇水文地質調查研究總報告」,經濟部中央地質調查所計劃調查研究成果總報告,1999。
73. 經濟部中央地質調查所,「地下水補注地質敏感區劃定計畫書(G0001濁水溪沖積扇)」,一零三年度經濟部地下水補注地質敏感區劃定計畫書,2014。
74. 經濟部水利署,「100年度水文年報第三部份-地下水」,2012。
75. 經濟部水利署,「101年度水文年報第三部份-地下水」,2013。
76. 經濟部水利署,「102年度水文年報第三部份-地下水」,2014。
77. 經濟部水利署,「103年度水利統計年報」,2014,第1-2頁。
78. 鄭友誠,「雲彰地區地層下陷具體解決方案暨行動計畫」,行政院農業委員會農業試驗所技術服務季刊,第243期,9月,2012。
79. 譚增偉、王鐘和,「當今農業對輪作制度應有的認識(一)輪作制度的起源、歷史、意義與範圍」,行政院農業委員會農業試驗所技術服務季刊,第44期,12月,第1-3頁,2000。
論文全文使用權限:同意授權於2021-08-23起公開