現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:以長期監測資料為基準的橋梁最佳化結構識別及其在安全評估之應用 [以論文名稱查詢館藏系統]
論文英文名稱:Optimal Identification of Bridge Structure and Its Application on Safety Evaluation Based on Long-term Monitoring Data [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:工程學院工程科技博士班
畢業學年度:104
畢業學期:第二學期
中文姓名:邱毅宗
英文姓名:Yi-Tsung Chiu
研究生學號:100679024
學位類別:博士
語文別:中文
口試日期:2016/07/19
指導教授中文名:宋裕祺
指導教授英文名:Yu-Chi Sung
口試委員中文名:蔡益超;張國鎮;呂良正;尹世洵;林子剛;洪曉慧;宋裕祺
口試委員英文名:Yu-Chi Sung;Yu-Chi Sung;Yu-Chi Sung;Yu-Chi Sung;Yu-Chi Sung;Yu-Chi Sung;Yu-Chi Sung
中文關鍵詞:反應曲面法混合式遺傳演算法橋梁檢測鋼索支撐橋梁鋼索邊界條件
英文關鍵詞:Response Surface MethodHybrid Genetic AlgorithmBridge InspectionCable-supported BridgeBoundary Condition of Cable
論文中文摘要:本文第一部份研擬以長期監測資料為基準之橋梁最佳化結構識別。為求精確,橋梁結構有限元素模型通常須具備相當數量之元素,導致分析費時、無法立即反映監測數據所寓含之結構性能,進而達成即時結構健康診斷的功效。本文研議以簡易的反應曲面函數來取代繁複的有限元素分析,利用混合式遺傳演算法,促使反應曲面函數值趨近於有限元素分析之結果,達到以符合實際橋梁之靜態與動態特性為目標的最佳化結構識別。如此一來,感應器量測所得結構反應之長期監測資料,便可藉由基本結構矩陣特性迅速獲得對應的結構安全狀況,作為橋梁即時健康診斷之依據。
本文第二部份則推導一平面鋼索兩端基於廣義邊界條件(即鋼索兩端所有六個自由度均為彈簧支承)之鋼索軸力與振動頻率關係理論解,有效解決鋼索支撐橋梁中之鋼索兩端實際勁度對於鋼索振動頻率與軸力影響之問題。此外,本文亦提出以全橋有限元素模型進行鋼索強迫振動之分析方法,考量鋼索兩端邊界條件進行鋼索振動頻率與軸力之評估,並做相關案例分析與探討。本文研究成果可供為斜張橋、脊背橋與吊橋等橋梁長期鋼索軸力評估之用。
論文英文摘要:This dissertation first proposed an optimal identification method for bridge structure based on long-term monitoring data. The total number of element in structural model usually needs to be adopted with a significant quantity to get a more accurate analytical results. It costs numerous computing time and is unable to map the structural responses monitored by in-situ sensors into the corresponding structural performance in a short moment and therefore the real time structural health diagnosis becomes to be difficult and even impossible. Integrated with the hybrid genetic algorithm, the response surface method of experimental design function was proposed to take place of tedious finite element structural analysis, serving as rapid structural health diagnosis. The proposed response surface method gives the reliable results close to those of static as well as dynamic characteristics of actual bridge as a result of optimal identification of structural model. Therefore, the real time structural safety assessment of bridge based on long-term monitoring data is able to be carried out successfully.
Secondly, this dissertation derived governing equation of a cable with end- support at elastic springs to consider the generalized and real boundary condition of the cables in cable-supported bridges. The theoretical solution indicating relationship between vibration frequency and axial force of a cable with generalized boundary is able to be obtained and some case studies were performed and discussed. In addition, an innovative approach applying a forced vibration to a specific cable in the whole cable-supported bridge model was proposed to take real boundary conditions of the cables into account and eventually the important information represented by vibration frequency versus cable force can be acquired with ease. The results obtained are available to structural health assessment of the cable-supported bridges.
論文目次:摘 要 i
ABSTRACT iii
誌 謝 v
目 錄 vii
表目錄 xv
圖目錄 xix
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究重點與方法 3
1.3 論文組織與架構 4
第二章 文獻回顧 7
2.1 前言 7
2.2 橋梁長期監測 7
2.3 混合式遺傳演算法於土木工程上之應用 16
2.4 鋼索軸力評估之研究 19
2.5 小結 23
第三章 橋梁有限元素分析模型之最佳化識別 25
3.1 前言 25
3.2 移動載重理論 25
3.3 有限元素模型最佳化識別之基本觀念 30
3.3.1 矩陣最佳化識別法 31
3.3.2 設計參數調整法 32
3.4 基於反應曲面法之有限元素模型最佳化識別方法 33
3.4.1 實驗設計 34
3.4.1.1 全因子實驗設計 35
3.4.1.2 中心複合設計 35
3.4.1.3 Box-Behnken Design 36
3.4.2 反應曲面函數型式之選擇 38
3.4.3 反應曲面函數檢驗 39
3.4.4 參數顯著性檢定 40
3.5 小結 42
第四章 混合式遺傳演算法 43
4.1 前言 43
4.2 遺算演算法概述 43
4.3 遺傳演算法要點說明 46
4.3.1 編碼方式 46
4.3.1.1 二進制編碼 47
4.3.1.2 實數編碼 47
4.3.2 適應度函數 48
4.3.2.1 目標函數與適應度函數 48
4.3.2.2 適應度函數尺寸轉換 49
4.3.3 選擇操作 52
4.3.3.1 比例選擇法 52
4.3.3.2 精英保留策略 53
4.3.3.3 排序選擇法 53
4.3.3.4 隨機聯賽法 53
4.3.3.5 期望值選擇法 54
4.3.4 交配操作 54
4.3.4.1 單點交配 54
4.3.4.2雙點與多點交配 55
4.3.4.3 均勻交配 56
4.3.4.4 算數交配 57
4.3.5 突變操作 58
4.3.5.1 簡單突變 58
4.3.5.2 均勻突變 59
4.3.5.3 非均勻突變 59
4.3.5.4 高斯突變 60
4.3.5.5 邊界突變 60
4.4 具限制條件遺傳演算法 61
4.5 遺傳演算法之基本參數設計原則 63
4.6 混合式遺傳演算法 64
4.6.1 模擬退火法 64
4.6.2 結合GA與SA之混合式遺傳演算法 66
4.6.3 粒子群演算法 67
4.6.4 結合PSO、SA、GA之混合式遺傳演算法 71
4.7 混合式遺傳演算法PSO-SA-GA分析與驗證 75
4.7.1 無束制數學函數最佳化問題求解 75
4.7.2 桁架結構最佳化設計應用 84
4.8 小結 96
第五章 以現地車載實驗與長期安全監測為基準之橋梁有限元素模型最佳化 97
5.1 前言 97
5.2 案例分析-大跨距橋梁 98
5.2.1 長期監測系統 98
5.2.2 現地實驗 103
5.2.2.1 強迫振動實驗 103
5.2.2.2 靜態載重實驗 107
5.2.2.3 動態載重實驗 110
5.2.3 有限元素模型之建立 116
5.2.4 基於現地實驗之混合式遺傳演算法最佳化設計參數 119
5.2.4.1 反應曲面函數建立 120
5.2.4.2 PSO-SA-GA 131
5.2.5 現地實驗、長期監測與有限元素分析比對 133
5.2.5.1 現地實驗與有限元素分析比較 133
5.2.5.2 長期監測與有限元素分析比較 138
5.3 波型鋼浪腹板預力箱型梁複合橋 139
5.3.1 長期監測系統 139
5.3.2 現地實驗 148
5.3.2.1 強迫振動實驗 148
5.3.2.2 靜態載重實驗 149
5.3.3 有限元素模型之建立 152
5.3.4 基於現地實驗之混合式遺傳演算法最佳化設計參數 153
5.3.4.1 反應曲面函數建立 153
5.3.4.1 PSO-SA-GA 161
5.3.5 現地實驗、長期監測與有限元素分析比對驗證 162
5.3.5.1 現地實驗與有限元素分析比較 162
5.3.5.2 長期監測與有限元素分析比較 163
5.3.6 橋梁安全評估方法之研訂 165
5.3.6.1 等效活載重之評估方法 165
5.3.6.2 橋梁長期應力安全評估 171
5.3.6.3 橋梁長期撓度檢核 176
5.3.6.4 橋梁長期安全評估程序之建議 178
5.4 小結 179
第六章 鋼索支撐橋梁之鋼索軸力評估理論 181
6.1 前言 181
6.2 常用鋼索理論推導與簡介 182
6.2.1 以弦理論為依據之鋼索軸力評估 182
6.2.2 以梁-柱理論為依據之鋼索軸力評估 183
6.2.3 Zui鋼索軸力評估公式 186
6.3 鋼索兩端廣義邊界條件之軸力評估解析解推導與探討 188
6.3.1 考量鋼索長度變化之軸力分析理論 188
6.3.2 考量鋼索廣義邊界條件之軸力分析理論 190
6.3.3 鋼索廣義邊界條件與常見邊界條件之關係探討 191
6.3.4 鋼索不同邊界條件與軸力變化關係探討 194
6.3.5 不同振動頻率之鋼索邊界條件與軸力變化關係探討 200
6.4 考量鋼索兩端邊界條件之矩陣推導 203
6.4.1 考量鋼索兩端邊界條件之矩陣分離方法 203
6.4.2 斜張橋鋼索索力評估輔助程式之開發 205
6.5 考量整體橋梁特性之強迫振動求解頻率與鋼索軸力方法 206
6.6 案例分析A-社子大橋鋼索軸力評估 208
6.6.1 社子大橋概要 208
6.6.2 鋼索之自然振動頻率量測 210
6.6.2.1 量測儀器及架設方式與程序之概述 210
6.6.2.2 微振歷時之擷取與解析 211
6.6.3 溫度對鋼索頻率影響效應 213
6.6.4 鋼索兩端邊界條件矩陣法 214
6.6.4.1 鋼索與邊界條件元素之選定 214
6.6.4.2 邊界條件矩陣之模擬與驗證 215
6.6.4.3 鋼索索力評估結果 217
6.6.5 鋼索兩端廣義邊界條件理論法 222
6.6.6 整體橋梁強迫振動法 225
6.6.7 鋼索軸力評估方法之研討 228
6.7 案例分析B-大直橋鋼索軸力評估 231
6.7.1 大直橋概要 231
6.7.2 鋼索自然振動頻率 232
6.7.3 數值分析模型之建立 232
6.7.4 鋼索兩端邊界條件矩陣法 234
6.7.5 鋼索兩端廣義邊界條件理論法 237
6.7.6 整體橋梁強迫振動法 240
6.7.7 鋼索軸力評估方法之研討 243
6.8 小結 246
第七章 結論與建議 247
7.1 結論 247
7.2 建議 252
參考文獻 255
作者簡歷 265
論文參考文獻:1. D. N. Farhey, "Bridge instrumentation and monitoring for structural diagnostics," Structural Health Monitoring, Vol. 4, Issue 4, 2005, pp. 301-318.
2. B. J. A. Costa and J. A. Figueiras, "Evaluation of a strain monitoring system for existing steel railway bridges," Journal of Constructional Steel Research, Vol. 72, Issue 0, 2012, pp. 179-191.
3. K. Y. Wong, "Design of a structural health monitoring system for long-span bridges," Structure and Infrastructure Engineering, Vol. 3, Issue 2, 2007, pp. 169-185.
4. D. M. Frangopol, A. Strauss, and S. Kim, "Bridge reliability assessment based on monitoring," Journal of Bridge Engineering, Vol. 13, Issue 3, 2008, pp. 258-270.
5. C. C. Spyrakos, I. G. Raftoyiannis, and J. C. Ermopoulos, "Condition assessment and retrofit of a historic steel-truss railway bridge," Journal of Constructional Steel Research, Vol. 60, Issue 8, 2004, pp. 1213-1225.
6. A. E. Aktan, F. N. Catbas, K. A. Grimmelsman, and C. J. Tsikos, "Issues in infrastructure health monitoring for management," Journal of Engineering Mechanics, Vol. 126, Issue 7, 2000, pp. 711-724.
7. C. Gentile, "Deflection measurement on vibrating stay cables by non-contact microwave interferometer," NDT and E International, Vol. 43, Issue 3, 2010, pp. 231-240.
8. A. M. Alani, M. Aboutalebi, and G. Kilic, "Applications of ground penetrating radar (GPR) in bridge deck monitoring and assessment," Journal of Applied Geophysics, Vol. 97, Issue 0, 2013, pp. 45-54.
9. M. Liu, D. Frangopol, and S. Kim, "Bridge System Performance Assessment from Structural Health Monitoring: A Case Study," Journal of Structural Engineering, Vol. 135, Issue 6, 2009, pp. 733-742.
10. Y. Q. Ni, X. G. Hua, K. Q. Fan, and J. M. Ko, "Correlating modal properties with temperature using long-term monitoring data and support vector machine technique," Engineering Structures, Vol. 27, Issue 12, 2005, pp. 1762-1773.
11. Y. Q. Ni, X. G. Hua, K. Y. Wong, and J. M. Ko, "Assessment of Bridge Expansion Joints Using Long-Term Displacement and Temperature Measurement," Journal of Performance of Constructed Facilities, Vol. 21, Issue 2, 2007, pp. 143-151.
12. C. Q. Miao, Y. Deng, Y. L. Ding, and A. Q. Li, "Damage alarming for bridge expansion joints using novelty detection technique based on long-term monitoring data," J. Cent. South Univ., Vol. 20, Issue 1, 2013, pp. 226-235.
13. A. Patjawit and W. Kanok-Nukulchai, "Health monitoring of highway bridges based on a Global Flexibility Index," Engineering Structures, Vol. 27, Issue 9, 2005, pp. 1385-1391.
14. T. H. T. Chan, L. Yu, H. Y. Tam, Y. Q. Ni, S. Y. Liu, W. H. Chung, and L. K. Cheng, "Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: Background and experimental observation," Engineering Structures, Vol. 28, Issue 5, 2006, pp. 648-659.
15. B. J. A. Costa and J. A. Figueiras, "Evaluation of a strain monitoring system for existing steel railway bridges," Journal of Constructional Steel Research, Vol. 72, Issue, 2012, pp. 179-191.
16. A. Cury, C. Cremona, and J. Dumoulin, "Long-term monitoring of a PSC box girder bridge: Operational modal analysis, data normalization and structural modification assessment," Mechanical Systems and Signal Processing, Vol. 33, Issue, 2012, pp. 13-37.
17. D. Li, Z. Zhou, and J. Ou, "Dynamic behavior monitoring and damage evaluation for arch bridge suspender using GFRP optical fiber Bragg grating sensors," Optics & Laser Technology, Vol. 44, Issue 4, 2012, pp. 1031-1038.
18. G. A. Stephen, J. M. W. Brownjohn, and C. A. Taylor, "Measurements of static and dynamic displacement from visual monitoring of the Humber Bridge," Engineering Structures, Vol. 15, Issue 3, 1993, pp. 197-208.
19. P. Olaszek, "Investigation of the dynamic characteristic of bridge structures using a computer vision method," Measurement, Vol. 25, Issue 3, 1999, pp. 227-236.
20. A. M. Wahbeh, P. C. John, and F. M. Sami, "A vision-based approach for the direct measurement of displacements in vibrating systems," Smart Materials and Structures, Vol. 12, Issue 5, 2003, pp. 785.
21. Y.-C. Sung, T. Miyasaka, T.-K. Lin, C.-Y. Wang, and C.-Y. Wang, "A case study on bridge health monitoring using position-sensitive detector technology," Structural Control and Health Monitoring, Vol. 19, Issue 2, 2012, pp. 295-308.
22. N. S. Kim and N. S. Cho, "Estimating deflection of a simple beam model using fiber optic bragg-grating sensors," Experimental Mechanics, Vol. 44, Issue 4, 2004, pp. 433-439.
23. M. Meo, G. Zumpano, X. Meng, E. Cosser, G. Roberts, and A. Dodson, "Measurements of dynamic properties of a medium span suspension bridge by using the wavelet transforms," Mechanical Systems and Signal Processing, Vol. 20, Issue 5, 2006, pp. 1112-1133.
24. J. J. Lee and M. Shinozuka, "Real-Time Displacement Measurement of a Flexible Bridge Using Digital Image Processing Techniques," Experimental Mechanics, Vol. 46, Issue 1, 2006, pp. 105-114.
25. S. R. Abid, N. Tayşi, and M. Özakça, "Experimental analysis of temperature gradients in concrete box-girders," Construction and Building Materials, Vol. 106, Issue, 2016, pp. 523-532.
26. N. Kulprapha and P. Warnitchai, "Structural health monitoring of continuous prestressed concrete bridges using ambient thermal responses," Engineering Structures, Vol. 40, Issue, 2012, pp. 20-38.
27. S.-F. Hwang and R.-S. He, "A hybrid real-parameter genetic algorithm for function optimization," Advanced Engineering Informatics, Vol. 20, Issue 1, 2006, pp. 7-21.
28. T. White, B. Pagurek, and F. Oppacher, "ASGA: Improving the Ant System by Integration with Genetic Algorithms," Genetic Programming 1998: Proceedings of the Third Annual Conference, University of Wisconsin, Madison, Wisconsin, USA, 1998, Morgan Kaufmann, 610--617.
29. I.-k. Jeong and J.-j. Lee, "Adaptive simulated annealing genetic algorithm for system identification," Engineering Applications of Artificial Intelligence, Vol. 9, Issue 5, 1996, pp. 523-532.
30. H. Wang and H. Ohmori, "Elasto-plastic analysis based truss optimization using Genetic Algorithm," Engineering Structures, Vol. 50, Issue, 2013, pp. 1-12.
31. D. Ribeiro, R. Calçada, R. Delgado, M. Brehm, and V. Zabel, "Finite element model updating of a bowstring-arch railway bridge based on experimental modal parameters," Engineering Structures, Vol. 40, Issue, 2012, pp. 413-435.
32. M. E. Semelawy, A. O. Nassef, and A. A. E. Damatty, "Design of prestressed concrete flat slab using modern heuristic optimization techniques," Expert Syst. Appl., Vol. 39, Issue 5, 2012, pp. 5758-5766.
33. J. Cheng, "Optimum design of steel truss arch bridges using a hybrid genetic algorithm," Journal of Constructional Steel Research, Vol. 66, Issue 8–9, 2010, pp. 1011-1017.
34. V. Srinivas and K. Ramanjaneyulu, "An integrated approach for optimum design of bridge decks using genetic algorithms and artificial neural networks," Advances in Engineering Software, Vol. 38, Issue 7, 2007, pp. 475-487.
35. V. Toğan and A. T. Daloğlu, "Optimization of 3d trusses with adaptive approach in genetic algorithms," Engineering Structures, Vol. 28, Issue 7, 2006, pp. 1019-1027.
36. V. C. de Castilho, M. K. El Debs, and M. do Carmo Nicoletti, "Using a modified genetic algorithm to minimize the production costs for slabs of precast prestressed concrete joists," Engineering Applications of Artificial Intelligence, Vol. 20, Issue 4, 2007, pp. 519-530.
37. L.-l. Li, L. Wang, and L.-h. Liu, "An effective hybrid PSOSA strategy for optimization and its application to parameter estimation," Applied Mathematics and Computation, Vol. 179, Issue 1, 2006, pp. 135-146.
38. M. G. Sahab, A. F. Ashour, and V. V. Toropov, "A hybrid genetic algorithm for reinforced concrete flat slab buildings," Computers & Structures, Vol. 83, Issue 8–9, 2005, pp. 551-559.
39. C. A. C. Coello and M. S. Lechuga, "MOPSO: a proposal for multiple objective particle swarm optimization," Evolutionary Computation, 2002. CEC 02. Proceedings of the 2002 Congress on, 2002, 2002, 1051-1056.
40. A. Salman, I. Ahmad, and S. Al-Madani, "Particle swarm optimization for task assignment problem," Microprocessors and Microsystems, Vol. 26, Issue 8, 2002, pp. 363-371.
41. Y.-C. Sung, C.-Y. Wang, and E.-H. Teo, "Application of particle swarm optimisation to construction planning for cable-stayed bridges by the cantilever erection method," Structure and Infrastructure Engineering, Vol. 12, Issue 2, 2016, pp. 208-222.
42. Z. Fang and J. Wang, "Practical Formula for Cable Tension Estimation by Vibration Method," Journal of Bridge Engineering, Vol. 17, Issue 1, 2010, pp. 161-164.
43. S.-W. Kim and N.-S. Kim, "Dynamic characteristics of suspension bridge hanger cables using digital image processing," NDT & E International, Vol. 59, Issue, 2013, pp. 25-33.
44. C.-C. Chen, W.-H. Wu, H.-Z. Tseng, C.-H. Chen, and G. Lai, "Application of digital photogrammetry techniques in identifying the mode shape ratios of stay cables with multiple camcorders," Measurement, Vol. 75, Issue, 2015, pp. 134-146.
45. K.-S. Park, T.-R. Seong, and M.-H. Noh, "Feasibility Study on Tension Estimation Technique for Hanger Cables Using the FE Model-Based System Identification Method," Mathematical Problems in Engineering, Vol. 2015, Issue, 2015, pp. 12.
46. H. Zui, T. Shinke, and Y. Namita, "Practical Formulas for Estimation of Cable Tension by Vibration Method," Journal of Structural Engineering, Vol. 122, Issue 6, 1996, pp. 651-656.
47. B. H. Kim and T. Park, "Estimation of cable tension force using the frequency-based system identification method," Journal of Sound and Vibration, Vol. 304, Issue 3–5, 2007, pp. 660-676.
48. B. H. Kim, T. Park, H. Shin, and T.-Y. Yoon, "A Comparative Study of the Tension Estimation Methods for Cable Supported Bridges," Steel Structures, Vol. 7, Issue 1, 2007, pp. 77-84.
49. C. Vallabhan, "Two-Dimensional Nonlinear Analysis of Long Cables," Journal of Engineering Mechanics, Vol. 134, Issue 8, 2008, pp. 694-697.
50. M. G. Yang, Z. Q. Chen, and X. G. Hua, "A new two-node catenary cable element for the geometrically non-linear analysis of cable-supported structures," Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 224, Issue 6, 2010, pp. 1173-1183.
51. H. Nam and N. T. Nghia, "Estimation of Cable Tension Using Measured Natural Frequencies," Procedia Engineering, Vol. 14, Issue, 2011, pp. 1510-1517.
52. M. A. Ceballos and C. A. Prato, "Determination of the axial force on stay cables accounting for their bending stiffness and rotational end restraints by free vibration tests," Journal of Sound and Vibration, Vol. 317, Issue 1–2, 2008, pp. 127-141.
53. J. Wei, G. Li, and M. Razavi: Theoretical Study on Cable Tension Detection Considering Support Vibration, in Transportation and Development Innovative Best Practices 2008, 450-455; 2008, American Society of Civil Engineers.
54. C.-C. Chen, W.-H. Wu, C.-H. Chen, and G. Lai, "Determination of stay cable force based on effective vibration length accurately estimated from multiple measurements," Smart Structures and Systems, Vol. 11, Issue 4, 2013, pp. 411-433.
55. 張國鎮、周智傑, "集鹿斜張橋委託監測工作", NCREE-04-021, 2004.
56. 李政寬、陳建州、周智傑、張國鎮,「斜張鋼纜微振訊號有限元素法解析」,中國土木水利工程學刊,第十八卷, 第二期, 2006, 第279-288頁。
57. A. Berman and W. G. Flannelly, "Theory of Incomplete Models of Dynamic Structures," AIAA Journal, Vol. 9, Issue 8, 1971, pp. 1481-1487.
58. G. E. P. Box and K. B. Wilson, "On the Experimental Attainment of Optimum Conditions," Journal of the Royal Statistical Society. Series B (Methodological), Vol. 13, Issue 1, 1951, pp. 1-45.
59. D. C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, 2006,
60. 宗周紅、任伟新,橋梁有限元素模型修正和模型確認,北京:人民交通出版社,2012。
61. G. E. P. Box and D. W. Behnken, "Some New Three Level Designs for the Study of Quantitative Variables," Technometrics, Vol. 2, Issue 4, 1960, pp. 455-475.
62. 馬秀蘭、吳德邦,統計學-以 Microsoft Excel 為例,新北市:新文京,2011。
63. J. H. Holland, Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence, Oxford, England: U Michigan Press, 1975, viii, 183.
64. 謝政、李建平、湯澤瀅,非線性最優化,長沙:國防科技大學出版社,2003。
65. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley Longman Publishing Co., Inc., 1989, 372.
66. 陳國良、王煦法、庄鎮泉、王東生,遺傳演算法及其應用,北京:人民郵電出版社,1996。
67. 周明、孫樹棟,遺傳演算法原理及應用,北京:國防工業出版社,1999。
68. 盧險峰,最佳化方法應用基礎,上海:同濟大學出版社,2003。
69. 蘇進國,模糊遺傳演算法在橋梁耐震性能設計之應用與耐震維修補強生命週期成本最小化之研究,博士 論文,國立臺北科技大學工程科技研究所,臺北,2008。
70. M. M. Millonas, Swarms, Phase Transitions, and Collective Intelligence, 1993,
71. Y. Shi and R. C. Eberhart: Parameter selection in particle swarm optimization, in Evolutionary Programming VII: 7th International Conference, EP98 San Diego, California, USA, March 25–27, 1998 Proceedings, (eds. V. W. Porto, et al.), 591-600; 1998, Berlin, Heidelberg, Springer Berlin Heidelberg.
72. 王俊穎,混合式遺傳演算法應用於斜張橋及脊背橋鋼索預力最佳化設計與施工規劃之研究,博士 論文,國立臺北科技大學工程科技研究所,臺北,2013。
73. 梁醒培、王輝,基於有限元素法的結構優化設計-原理與工程應用,北京:清華大學出版社,2010。
74. 李裕華,結構優化設計通用程序系統SAPOP例題集,西安交通大學,1986。
75. M. K. T. Felix T.S. Chan, Swarm Intelligence, Focus on Ant and Particle Swarm Optimization, InTech, 2007,
76. R. A. Gellatly, Optimal structural design, Air Force Flight Dynamics Laboratory 1971,
77. L. A. Schmit and H. Miura, "A New Structural Analysis/Synthesis Capability-ACCESS 1," AIAA Journal, Vol. 14, Issue 5, 1976, pp. 661-671.
78. M. R. Ghasemi, E. Hinton, and R. D. Wood, "Optimization of trusses using genetic algorithms for discrete and continuous variables," Engineering Computations, Vol. 16, Issue 3, 1999, pp. 272-303.
79. L. A. Schmit and B. Farshi, "Some Approximation Concepts for Structural Synthesis," AIAA Journal, Vol. 12, Issue 5, 1974, pp. 692-699.
80. M. W. Dobbs and R. B. Nelson, "Application of optimality criteria to automated structural design," AIAA Journal, Vol. 14, Issue 10, 1976, pp. 1436-1443.
81. 馮兆祥、缪長青、鐘建馳,大跨橋梁安全監測與評估,北京:人民交通出版社,2011。
82. Y. T. Chiu, T. K. Lin, H. H. Hung, Y. C. Sung, and K. C. Chang, "Integration of in-situ load experiments and numerical modeling in a long-term bridge monitoring system on a newly-constructed widened section of freeway in Taiwan," Smart Structures and Systems, Vol. 13, Issue 6, 2014, pp. 1015-1039.
83. 財團法人國家實驗研究院國家地震工程研究中心,國道1號五股至楊梅拓寬工程五股林口段工程橋梁工程監測計畫第四階段期末報告,臺北:財團法人國家實驗研究院國家地震工程研究中心,2016。
84. 財團法人國家實驗研究院國家地震工程研究中心,國道1號五股至楊梅拓寬工程五股林口段工程橋梁工程監測計畫第四階段監測系統使用手冊,臺北:財團法人國家實驗研究院國家地震工程研究中心,2016。
85. J. Cheng and Q. S. Li, "Reliability analysis of long span steel arch bridges against wind-induced stability failure," Journal of Wind Engineering and Industrial Aerodynamics, Vol. 97, Issue 3–4, 2009, pp. 132-139.
86. Y. Sharifi and J. K. Paik, "Ultimate strength reliability analysis of corroded steel-box girder bridges," Thin-Walled Structures, Vol. 49, Issue 1, 2011, pp. 157-166.
87. 財團法人國家實驗研究院國家地震工程研究中心,臺中生活圈2號線東段、臺中生活圈4號線北段與平面延伸段及大里聯絡道工程-波形鋼腹板預力箱型梁複合橋及預鑄節塊橋墩橋梁監測計畫第四階段期末報告,臺北:財團法人國家實驗研究院國家地震工程研究中心,2013。
88. 財團法人國家實驗研究院國家地震工程研究中心,臺中生活圈2號線東段、臺中生活圈4號線北段與平面延伸段及大里聯絡道工程-波形鋼腹板預力箱型梁複合橋及預鑄節塊橋墩橋梁監測計畫第四階段監測系統使用手冊,臺北:財團法人國家實驗研究院國家地震工程研究中心,2013。
89. 交通部,公路橋梁設計規範,交通技術標準規範公路類公路工程部,中華民國九十八年十二月。
90. W.-X. Ren, X.-L. Peng, and Y.-Q. Lin, "Experimental and analytical studies on dynamic characteristics of a large span cable-stayed bridge," Engineering Structures, Vol. 27, Issue 4, 2005, pp. 535-548.
91. Y.-H. Huang, J.-Y. Fu, R.-H. Wang, Q. Gan, and A.-R. Liu, "Unified Practical Formulas for Vibration-Based Method of Cable Tension Estimation," Advances in Structural Engineering, Vol. 18, Issue 3, 2015, pp. 405-422.
92. G. Nugroho, H. Priyosulistyo, and B. Suhendro, "Evaluation of Tension Force Using Vibration Technique Related to String and Beam Theory to Ratio of Moment of Inertia to Span," Procedia Engineering, Vol. 95, Issue, 2014, pp. 225-231.
93. L. Wang, X. Zhang, S. Huang, and L. Li, "Measured Frequency for the Estimation of Cable Force by Vibration Method," Journal of Engineering Mechanics, Vol. 141, Issue 2, 2014, pp. 06014020.
94. ANSYS, ANSYS Users Manual version 14.5, Swanson Analysis Systems, Inc., 2013,
95. 賴順政、黃守立、林育賢, "台北市中山大直橋監測及預警系統," 第十屆中華民國結構工程研討會, 桃園, 2010.
96. 盧辰祥、王亭復,「大直斜張橋結構系統規劃」,土木技術,第二卷, 第九期, 1999, 第38-44頁。
論文全文使用權限:同意授權於2021-08-21起公開