現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:高塑性不飽和紅土於入滲下強度之探討 [以論文名稱查詢館藏系統]
論文英文名稱:A study on the shear strength of unsaturated high plasticity clay [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木工程系土木與防災碩士班
畢業學年度:104
畢業學期:第二學期
中文姓名:李名晉
英文姓名:LEE,MING-CHINA
研究生學號:102428036
學位類別:碩士
語文別:中文
指導教授中文名:魏敏樺
口試委員中文名:魏敏樺;陳卓然;張榮峰
中文關鍵詞:不飽和土壤三軸試驗剪─入滲三軸試驗高塑性紅土
英文關鍵詞:unsaturated soilshear infiltrationTriaxial Testshigh plasticity clay
論文中文摘要:台灣雨量充沛平均年降雨量達到2515毫米,約為全球平均的3倍,加上山地、丘陵等地形佔了總面積三分之二,故需頻繁開發山坡地,導致邊坡危害案例增多。土壤在常態下為不飽和狀態,由於雨水入滲到土壤中與地下水位的變化,使土壤接近為飽合狀態,轉變過程中土壤含水量上升、孔隙水壓上升、基質吸力下降,導致剪力強度降低,容易造成邊坡崩塌破壞。本研究取用林口紅土探討高塑性紅土在入滲情況下,對於不飽和土壤剪力強度的影響。本研究先進行土壤的基本物理試驗和水分土壤特徵線,再透過一系列的三軸試驗,在不同基質吸力與淨正向應力條件下進行,三軸常吸力(CD)試驗與三軸剪─入滲試驗。剪─入滲試驗結果會與三軸常吸力試驗中所求得剪應力與破壞包絡面進行比較,定義出入滲行為下的剪力強度參數(c、ϕ_p^、ϕ_p^b)與基本破壞機制與探討,發展出入滲破壞下的破壞包絡面,再與不同級配組織之紅土所進行的常吸力試驗與剪─入滲試驗結果比較。
論文英文摘要:Muntainous areas and hillside terrains occupied two third of the total area of the island of Taiwan. The average annual rainfall of the island is around 2515 millimeters, which is about 3 times the average of the global rainfall. Landslide events, mainlay caused by heavy rainfall, have been devastating in the recent years. In general, the condition of the slope is unsaturated; during rainfall, water infiltrated into the ground surface causing the moisture content of these initially unsaturated slope to increase. Subsequently, the matric suction in these slopes reduces, so as their shear strength. This study examined the effects of shear strength of unsaturated highly plasticity clay. The shear strength obtained from a series of triaxil tests: the constant suction shearing tests and shearing-infiltration tests. Their shear strength result was compared and contrasted with published study.
論文目次:目 錄
摘 要 i
ABSTRACT ii
誌謝 iii
目 錄 iv
表目錄 vii
圖目錄 ix
第一章 緒論 1
1.1研究動機與目的 1
1.2 研究內容與方法 2
1.3 章節內容概述 2
第二章 文獻回顧 4
2.1紅土概述 4
2.2不飽和土壤組成 5
2.3不飽和土壤性質和基質吸力之理論 5
2.4土壤在飽和狀態下的反應 8
2.5土壤水份特徵曲線 9
2.6 不飽和土壤的力學行為 12
2.6.1 不飽和土壤之應力型態 12
2.6.2 不飽和土壤剪力強度 14
2.6.3 不飽和土壤之臨界狀態 18
2.7不飽和土壤三軸壓密排水試驗(CD) 18
2.8基質吸力與軸差應力之關係 21
2.9剪─入滲試驗 22
第三章 試驗土樣、設備與實驗步驟 24
3.1前言 24
3.1.2土樣來源 26
3.2三軸試驗之儀器 27
3.2.1飽和常吸力CD試驗儀器系統 28
3.2.2不飽和常吸力CD試驗儀器系統 29
3.2.3剪─入滲試驗儀器系統 30
3.3三軸試驗前置作業程序 31
3.3.1檢查是否漏水 31
3.3.2 三軸底座陶瓷板飽和 31
3.3.3三軸試驗試體安裝 31
3.4飽和試驗流程與項目 34
3.4.1 重模土樣準備 34
3.4.2飽和階段 35
3.4.3壓密階段 35
3.4.4剪切階段 36
3.5不飽和常吸力壓密排水(CD)試驗 36
3.5.1吸力平衡階段 36
3.5.2壓密階段 36
3.5.3剪切階段 37
3.6剪─入滲試驗 38
3.6.1剪切階段 38
3.6.2應力平衡階段 39
3.6.3入滲階段 40
第四章 結果與討論 41
4.1 介紹 41
4.2物理特性 41
4.2.1比重試驗 ASTS D854-14(2014): 41
4.2.2粒徑分佈試驗(ASTM D7928-16, 2016): 42
4.2.3阿太堡限度試驗(ASTM D4318-10, 2010): 43
4.2.4落錐試驗儀(BS 1377-2, 1990): 45
4.2.5夯實試驗(ASTM D1557-12, 2012): 47
4.3單向度壓密試驗結果 49
4.4壓力鍋試驗與鹽溶液試驗 55
4.4.1 土壤水分特徵曲線之經驗公式 57
4.5三軸壓密曲線 65
4.6常吸力CD結果 74
4.6.1三軸常吸力(CD)試驗之臨界狀態線 ( CSL ) 79
4.6.2延伸破壞包絡面─2D分析 83
4.6.3延伸破壞包絡面─3D分析 100
第五章 剪─入滲試驗探討與比較 104
5.1介紹 104
5.2剪─入滲試驗結果 104
5.3 延伸破壞包絡面與剪─入滲試驗之比較 128
5.4三軸試驗參數對照表 139
5.5常吸力CD剪力強度之比較 139
5.6剪─入滲強度之比較 144
第六章 結論與建議 150
6.1 結論 150
6.2 建議 151
參考文獻 152
論文參考文獻:參考文獻
1 ASTM D7928-16. (2016). "Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis." West Conshohocken. Pa.
2 ASTM D854-14. (2014). "Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer." West Conshohocken. Pa.
3 ASTM D698-12. (2012). "Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3))." West Conshohocken. Pa.
4 ASTM D1557-12. (2012). "Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3))." West Conshohocken. Pa.
5 ASTM D2435/D2435M-11 (2011). "Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading." West Conshohocken. Pa.
6 ASTM D3142/D3142M-11 (2011). "Standard Test Method for Specific Gravity." West Conshohocken. Pa.
7 ASTM D4318-10 (2010). "Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils." West Conshohocken. Pa.
8 ASTM D854-10 (2010). "Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer." West Conshohocken. Pa.
9 ASTM D2216-10 (2010). "Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass." West Conshohocken. Pa.
10 ASTM D6836-02 (2009). "Standard Test Methods for Determination of the Soil Water Characteristic Curve for Desorption Using Hanging Column, Pressure Extractor, Chilled Mirror Hygrometer, or Centrifuge." West Conshohocken. Pa.
11 ASTM D4943-08 (2008). "Standard Test Method for Shrinkage Factors of Soils by The Wax Method." West Conshohocken. Pa.
12 Cai, F., Ugai, K., Wakai, A., and Li, Q. (1998). "Effects of horizontal drains on slope stability under rainfall by three-dimensional finite element analysis." Computers and Geotechnics. 23(1998), 255-275.
13 Fredlund, D.G., and Xing, A. (1994). "Equation for the Soil-water Characteristic Curve." Canadian Geotechnical Journal, 34(4), 521-532.
14 Fredlund, D. G., and Rahardjo, H. (1993). Soil Mechanics for Unsaturated Soils. Wiley-Interscience Publication.
15 Fredlund, D.G., Morgenstern, N.R., and Widger, R.A. (1978). "The Shear Strength of Unsaturated Soils." Canadian Geotechnical Journal, 15(3), 313-321.
16 Fredlund, D.G., and Morgenstern, N.R. (1977). "Stree State Variables for Unsaturated Soils." Journal of Gtechnical Engineering Division, ASCE, 103(GT5), 447-466.
17 Gui, M.W., and Wu, Y.M., (2014). "Failure of soil under water infiltration condition." Engineering Geology, 181(2014), 124-141.
18 Goure-Doubi, H., Lecomte-Nana, G., Nait-Abbou F., Nait-Ali B., Smith, A., Coudert, B., amd Konan, L., (2014). "Construction and Building Materials." Construction and Building Materials, 55(2014), 333-340.
19 Lu, N., and Likos, W.J. (2004). Unsaturated Soil Mechanics. John Wiley and Sons.
20 Meilani, I., Rahardjo, H., and Leong, E.C. (2005). "Pore-water Pressure and Water Volume Change of An Unsaturated Soil under Infiltration Conditions." Canadian Geotechnica Journal, 42(6), 1509-1531.
21 Melinda, F., Rahardjo, H., Han, K.K., and Leong, E.C. (2004). "Shear Strength of Compacted Soil under Infiltration Conditions." Journal of Geotechnical Engineering Division, ASCE, 130(8), 807-817.
22 Maatouk, A., Leroueil, S., and La Rochelle, P. (1995). "Yielding and Critical State of A Collapsible Unsaturated Silty Soil." Geotechnique, vol. 45, no. 3, pp. 465-477.
23 Shan, H.Y, Lin, H.H., and Lien, J.Y. (2003). "Pore Pressure Coefficients of Unsaturated Soil." The 10 th Conf. on Current Researches in Geotechnical Engineering in Taiwan.
24 Vanapalli, S.K., Fredlund, D. G., and Pufahl, D.E. (1996). "Model for the Prediction of Shear Strength with Respect to soil Suction." Canadian Geotechnica Journal, 33(1996), 379-392.
25 Van Genuchten, M.T. (1980). "A Closed-form Equation for Predictiong the Hydraulic Conductivity of Unsaturated Soil." Soil Sci. Soc. Am. J. 44, 892-898.
26 Wheeler, S.J., and Sivakumar, V. (1995). "An Elasto-plastic Critical State Framework for Unsaturated Soil." Geotechnique, 45(1995), 35-53.
27 Wang, Q., Pufahl, D.E., and Fredlund, D. G. (2002). "A Study of Critical State on An Unsaturated Silty Soil." Canadian Geotechnica Journal, 39(2002), 213-218.
28 Wong J.C., Rahardjo, H., Toll, D.G., and Leong, E.C. (2001). "Modified Triaixal Apparatus for Shearing-infiltration Test." Geotechnica Testing Journal, 24(4), 370-380.
29 鄭斯元 (2012). 降雨引致基質吸力變化對紅土台地異質性邊坡穩定之影響,碩士論文,國立臺灣大學土木工程學系。
30 曾煒迪(2012)。非飽和低塑性粉土/黏土剪力強度之探討,碩士論文,國立台北科技大學土木工程系。
31 陳建豪(2012)。不飽和淺層崩積土壤基質吸力預測公式之研究,碩士論文,國立台灣科技大學營建管理系。
32 謝昇翰(2012)。非飽和山崩堆積岩屑剪力強度之探討,碩士論文,國立台北科技大學土木工程系。
33 蕭新財(2011)。不飽和崩積土壤淺層水文特性對邊坡穩定影響之研究,國立台灣科技大學,營建工程系。
34 吳永銘(2011. 濕吸力平衡路徑與水入滲對非飽和紅土強度之影響,碩士論文,國立台北科技大學土木工程系。
35 陳家豪 (2009). 不飽和紅土K0壓密行為之研究,碩士論文,國立台北科技大學土木工程學系,台北。
36 李世傑 (2008). 以三軸試驗探討不飽和紅土紅土之力學行為,碩士論文,國立台北科技大學土木工程學系。
37 游淳銘 (2005). 不飽和紅土剪力強度之研究-以林口台地為例,碩士論文,國立台北科技大學土木工程學系,台北。
38 朱信安 (2004). 林口台地不飽和紅土特性之研究,碩士論文,國立台北科技大學土木工程學系。
39 施國欽(1996)。大地工程學(一)土壤力學篇,文笙書局。
40 沈茂松 (1988) 實用土壤力學試驗,文笙書局,台北。
論文全文使用權限:同意授權於2021-08-22起公開