現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:地錨弱化與邊坡滑動關係之研究-以國道三號邊坡為例 [以論文名稱查詢館藏系統]
論文英文名稱:Correlation Between Earth Anchor Weakening and Slope Slide -Case Study on Slopes Along National Freeway 3 [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木工程系土木與防災碩士班
畢業學年度:104
畢業學期:第二學期
出版年度:105
中文姓名:杜彥德
英文姓名:Yen-Te Tu
研究生學號:103428040
學位類別:碩士
語文別:中文
口試日期:2016/07/13
指導教授中文名:陳水龍
指導教授英文名:Shong-Loong Chen
口試委員中文名:陳卓然;魏敏樺
中文關鍵詞:順向坡、土壤強度折減、地錨邊坡、三維邊坡、反算分析
英文關鍵詞:Dip Slope, Soil Strength Reduction, Earth-Anchored Slope, 3D Slope, Inverse Computation
論文中文摘要:2010年4月25日,國道三號南下3.1公里處,在無風無雨氣候狀況下,發生順向坡走山事件,大量土石崩落造成人員傷亡及交通阻塞,對此引發社會輿論,並使眾多工程學者探討地錨工程議題。根據前人研究[30]以及大地工程學會災後調查結果得知,在橋台預鑄場降挖時期,地錨荷重計明顯增加,研判當時邊坡應有滑動趨勢。
本研究利用PLAXIS 3D軟體進行邊坡模擬及計算分析,利用軟體內建功能之Borehole功能來模擬三維邊坡土層走向變化,研究方向並分為兩部分,反算分析及地錨預力損失邊坡破壞分析。
反算分析,邊坡地錨工程完成後因橋台預鑄場降挖有設置地錨荷重計,且開挖時邊坡地錨受力一度大幅增加,比對PLAXIS 3D地錨受力結果及地錨荷重計資料,推估當時預鑄場降挖之土壤強度參數摩擦角Ø為16度,凝聚力C為2~4kPa。
地錨預力損失邊坡破壞分析,利用反算分析結果之土壤參數作為邊坡破壞前初始值並進行土體折減分析計算。將地錨效能由設計預力之100%到10%進行折減,土體強度折減範圍則依據設計強度至災後土壤試驗之數據做為輸入值。經過一連串的C-Ø折減組合計算,推估當時邊坡發生臨界破壞狀態土壤強度參數,水位提高4m摩擦角Ø為15度,地錨預力折減至設計預力的18%時,是為邊坡穩定臨界狀態。
論文英文摘要:April 25 2010, a dip slope slide incident occurred at 3.1km southbound on National Freeway 3 on a calm day without any warning. A massive amount of materials collapsed onto the freeway causing casualties and traffic blockage. The incident led to public discussions and a large number of engineering researchers started to investigate issues regarding earth anchor engineering. Previous studies [30] and the result of aftermath survey conducted by Taiwan Geotechnical Society suggested that the readings of load cells installed for the earth anchors increased significantly during the sinking excavation of abutment pre casting site. It was speculated that the slopes had the tendency to slide.
The slope simulation and calculation of this study were conducted using PLAXIS 3D. The Borehole function in the program was used to simulate the possible changes in the dipping of soil layers in 3D slopes. The study consisted two parts, the inverse computation and the analysis on the slope failure due to loss of earth anchors’ pre-stressing.
For the inverse computation, load cells for earth anchors were installed for the sinking excavation of abutment pre-casting site at the end of earth anchor installation. The loading on the anchors increased at one time while the slopes were being excavated. By comparing the anchor loading from PLAXIS 3D and the load cell readings, it is estimated that the friction angle, Ø, was 16 degrees and cohesion, C, was 2~4kPa as part of the soil strength parameters measured for the pre-casting site excavation.
For the analysis on the slope failure due to loss of earth anchors’ pre-stressing, the soil parameters obtained from the inverse computation were used as the initial values before slope failure for soil mass reduction analysis. 100% to 10% of the design pre-stress loading was considered progressively for the reduction of earth anchor performance. For the soil mass strength reduction, the design strength and data obtained from the aftermath soil tests were used as the inputs. After a series of calculations using C-Ø reduction combinations, it is estimated that, for the soil strength parameters when the slopes reached the critical failure conditions, the water table rose 4m, the friction angle, Ø, was 15 degrees, and the pre-stress of earth anchors reduced to 18% of the design pre-stressing, which are the critical condition of the slope stability.
論文目次:摘要 i
目錄 vi
表目錄 ix
圖目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 1
1.3 研究方法內容 2
1.4 論文架構與概述 3
第二章 文獻回顧 5
2.1 邊坡破壞模式 5
2.2 砂岩頁岩邊坡崩塌之原因 7
2.3地錨相關介紹 9
2.3.1地錨的原理與構造 9
2.3.2地錨檢測分級 11
2.3.3 地錨揚起試驗(Lift-off Test) 11
2.3.4 地錨外觀防蝕改善之作法 14
2.4 相關文獻研究 15
2.5 剪力強度折減法(strength reduction factor,SRF) 16
第三章 研究方法 19
3.1 PLAXIS程式簡介 19
3.2 PLAXIS土壤組合律 19
3.3 PLAXIS參數輸入介紹 22
3.3.1飽和單位重γsat與非飽和單位重γunsat 23
3.3.2 楊氏模數 23
3.3.3 凝聚力(Cohesion) 23
3.3.4 摩擦角ψ(Friction angle) 24
3.3.5 柏松比ν( Poisson’s ratio) 24
3.3.6 界面元素強度 25
第四章 案例概述 26
4.1 區域地質資料 27
4.2 監測資料 33
4.2.1地錨荷重計 33
4.2.2水位觀測井 33
4.3 地錨檢測結果 35
4.3.1 地錨拉拔試驗 35
4.3.3地錨自由段水泥漿面調查 39
4.3.4組合抗拉試驗 39
4.3.5內視鏡檢視 40
4.3.6 鋼絞線長度量測 42
4.4 地錨試驗結果統整 44
第五章 數值分析 45
5.1 數值模擬之條件設定 45
5.1.1基本假設 45
5.1.1 材料參數 46
5.2 國道三號邊坡數值模擬分析 49
5.2.1 初始模型建立及施工步驟 49
5.2.4 地錨預力損失邊坡破壞分析 60
5.2.5 地下水位分析 65
第六章 結論與建議 72
6.1結論 72
6.2 建議 73
參考文獻 74
附錄A 常時水位地錨預力損失破壞邊坡位移圖 77
附錄B 提高水位2m地錨預力損失破壞邊坡位移圖 92
附錄C 提高水位4m地錨預力損失破壞邊坡位移圖 107
論文參考文獻:1.Brinkgreve, R. B. J. and Bakker, H. L. “Nonlinear finite elementanalysis of safety factors” , Computer Methods and Advances in Geomechanics, ,1991 pp.1117-1122.
2.Giam, S. K and Donald, I. B. “Determination of Critical Slip Surfaces for Slopes via Stress-Strain Calculations” ,Proceedings of the Fifth Australia-New Zealand Conference on Geomechanics, Sydney, Australia, 1988 ,pp. 461-464.
3.Griffiths, D. V. and Lane, P. A. "Slope Stability Analysis by Finite Elements." Geotechnique,Vol.49, No. 3, 1999,pp. 387-403.
4.Hanna, T.H. ”Foundation in Tension Ground Anchor”, McGraw-Hill Book Company, New York.,1982。
5.Lee, W. F. , Liao, H. J. et al. “ Failure Analysis of a Highway Dip Slope Slide,” ASCE, vol. 27, no 1, 2013, pp. 116-131.
6.Matsui, T. and San, K. C. “Finite Element Slope Stability Analysis by Shear Strength Reduction Technique” ,Soils and Foundations, Vol. 32, No. 1,1992, pp. 59-70.
7. PLAXIS Manual, “PLAXIS 2D 2011 Manual”,2011.
8. Sharifzadeh, M. et al. “Back analysis of an excavated slope failure in highly fractured rock mass: the case study of Kargar slope failure (Iran).” Environ. Earth Sci, 60(1), 2010. pp.183–192.
9.Tokashiki, N. and Aydan, O. “Kita-Uebaru natural rock slope failure and its back analysis.” Environ. Earth Sci., 62(1), 2011, pp. 25–31.
10. Ugai, K. “A Method of Calculation of Total Factor of Safety of Slopes by Elaso-Plastic FEM” ,Soils and Foundations, Vol. 29, No. 2, 1989 pp. 190-195.
11.Ugai, K. and Leshchinsky, D. “Three-Dimensional Limit Equilibrium and Finite Element Analysis : A Comparison of Results” ,Soils and Foundations , Vol. 35, No. 4, 1995, pp. 1-7
12.Varnes, D. J. “Slope movement types and processes,” In: Special Report 176: Landslides: Analysis and Control (Eds: R. L. Schuster, & R. J. Krizek,), Transportation and Road Research Board, National Academy of Science, Washington D. C., 1978, pp.11-33。
13.Zienkiewicz, O. C. , Humpheson, C. and R. W. Lewis, “Associated and Non-Associated Visco-Plasticity and Plasticity in Soil Mechanics”, Geotechnique, London, U.K., Vol. 25, No. 4, 1975 ,pp. 671-68
14.グラウンドアンカー技術協会編,「グラウンドアンカー工法設計施工指針」,1996,森北出版株式会社。
15.中國土木水利工程協會,「地錨設計與施工準則暨解說」,1998,科計圖書,第二版。
16.中華民國大地工程學會,「國道3號3.1公里崩塌事件原因調查工作總結報告」,2011,交通部。
17.社團法人中華民國大地工程學會,「公路邊坡大地工程設施維護與管理規範(草案)」,2014,交通部臺灣區國道新建工程局委託研究案。
18.何泰源、蕭秋安、蔡立盛,「台灣既有地錨之現況及改善建議地工技術」,第130期,2011年,第43-54頁。
19.洪如江,「順向坡之破壞與穩定」,2002,地工技術,第 94 期,第 5-18頁
20.洪如江,「台灣順向坡滑動災害的回顧與災害防治的原則」,2010,土木水利 第三十七卷 第三期,第1-7頁。
21.胡紹敏,砂岩與頁岩之邊坡穩定問題,邊坡穩定與坍方研討會,第117-144頁,1979。
22.黃彥均,砂/頁岩互層之順向坡強度折減對地錨荷重和坡體位移之影響,碩士論文,國立臺灣科技大學營建工程系,台北,2012。
23.黃玟菘,開挖引致順向坡坡體變形雨破壞歷程之研究,碩士論文,國立台灣大學土木工程研究所,台北,2012。
24.陳彥成,地錨效能與邊坡穩定關係之研究,碩士論文,華梵大學,環境與防災設計學系,石碇,2012。
25.陳樹群、陳冠翰、吳俊鋐,「地下水引發自由端順向坡土體滑動特性分析」,中華水土保持學報, 第45卷,第2期,2014,第 110-118頁。
26.陳勉銘、魏正岳、費立沅 (2010),「國道3 號順向坡滑動的地質解析」,地質,第29卷,第2期,2010,第12-15頁。
27.廖洪鈞、梁樾、林三賢、李維峰、廖瑞堂、李三畏、劉桓吉、吳啟瑞、魏佳韻、游行健,「臺灣地區道路邊坡崩塌發生機制及防治效益評估方法研究與應用(一)」,財團法人臺灣營建研究院研究報告,2002。
28.潘如蕙,剪力強度折減法應用於層狀土壤邊坡之穩定性研究,碩士論文,國立成功大學資源工程學系,台南,2007。
29.鄭清江、林銘郎;周功台、吳文隆、蕭秋安、陳俊定、王景平、蔡立盛,「臺灣地錨設計與施工問題探討」,2012,中華技術,第93期,第178-193。
30.陳瑩臻,地錨效能降低與土壤強度折減之邊坡穩定分析,碩士論文,國立台北科技大學土木工程學系,台北,2015。
31.行政院農委會水土保持局山坡地基本資料http://www.swcb.gov.tw/form/index-1.asp?m=&m1=32&m2=236&gp=689&id=1332。
32.林俊良,廬山地滑災害三維分析,碩士論文,2013。
33.羅佳明、鄭添耀、林彥享、蕭震洋、魏倫瑋、黃春銘、冀樹勇、林錫宏、林銘郎,「國道3 號七堵順向坡滑動過程之動態模擬」,中華水土保持學報, 第42卷,第3期,2011,第 175-183頁。 
論文全文使用權限:同意授權於2018-08-19起公開