現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:山岳隧道與雙圓型潛盾隧道三維變形分析 [以論文名稱查詢館藏系統]
論文英文名稱:Three-Dimensional Analyses of Deformations in Mountain Tunnels and Double-O-Tube Shield Tunnel [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:工程學院工程科技博士班
畢業學年度:104
畢業學期:第二學期
出版年度:105
中文姓名:李勝宗
英文姓名:Shen-Chung Lee
研究生學號:98679001
學位類別:博士
語文別:中文
口試日期:2016/07/15
指導教授中文名:陳水龍
指導教授英文名:Shong-Loon Chen
口試委員中文名:壽克堅、陳志南、潘以文、陳逸駿、陳卓然、陳水龍
口試委員英文名:Shong-Loon Chen
中文關鍵詞:山岳隧道、雙圓型潛盾隧道、隧道變形、隧道開挖面、斷面收縮率
英文關鍵詞:Mountain tunnel, Double-O-Tube (DOT) shield tunnel, Tunnel deformation, Excavation face, Contraction parameter
論文中文摘要:隧道開挖過程中,變形量之大小及分布一直被廣為關注與討論的課題。本論文以三維數值分析,探討在不同地質情況下之隧道變形行為。有別於其他學者之研究,本論文在分析過程中,隧道開挖斷面、輪進長度及初期支撐盡可能模擬現地實務情況;隧道周遭之介質,亦視岩體或土體之差異而採用不同的材料組合律。由數值分析結果得知,地質情況之好壞對隧道變形行為影響極大。大致而言,地質強度愈差且隧道斷面越大,開挖後之變位量越高。如與時間相依因素不予考慮,隧道最大變位量約位在開挖面後方2至3倍直徑距離處。位於開挖面之變位量約為該隧道最大變位量之1/3至1/2,此值隨著岩體品質越差而愈高。開挖面前方之變位量比值隨著距離之增加而逐漸減少,在開挖面前方約一倍直徑距離處,此比值已縮減至0.1左右。
就岩體組合律而言,山岳隧道以Hoek-Brown及Mohr-Coulomb兩種不同模式分析,其結果差異不大。至於軟弱土體之潛盾隧道數值分析,除了應注意斷面收縮率之影響外,土體組合律之選用應該考量應變與勁度之非線性關係。由本研究結果得知,具小應變勁度之硬化土壤模式(Harding Soil model with small-strain stiffness)因有考量土體之勁度與應變幅度之相依性,其分析結果與垷地監測值較符合。然以Mohr-Coulomb模式在大地工程之普遍性,進行數值運算時,可考慮先以Mohr-Coulomb模式分析,再輔以其它模式相互印證比對。
論文英文摘要:The magnitude and distribution of tunnel deformation are widely discussed topics in tunnel engineering. In this thesis, a three-dimensional finite element program was used for the analysis of tunnel deformation behavior under different geological conditions. In the process of the analysis, the tunnel cross-section sizes, the round excavation lengths, and the primary supports are simulated as close to the practical tunneling works as possible. The constitutive models for the medium surrounding the tunnel are different, just depending on the medium is rock or soil. According to the analytical results, geological conditions play a significant role in the deformation behavior. In general, large tunnel openings situated in poor quality rock mass have a larger deformation. If the time-dependent weakening of the rock mass is not considered, the tunnel deformation reaches its maximum value at a distance of two to three diamerers behind the excavation face. At the excavation face, the ratios of vertical displacement to the maximum vertical displacement are approximately 1/3 to 1/2, the weaker geological conditions result in greater ratio value. The pre-deformations ahead of the excavation face are gradually reduced with increasing distance from the face. At a distance of one diameter ahead of the face, the pre-deformation values are reduced to 10% of the maximum displacement.
In respect to the constitutive law of rock mass, the displacements analyzed by the Hoek-Brown and Mohr-Coulomb models are almost identical; in other words, both models are suitable for the numerical analyses of mountain tunnels. In the numerical analysis of shield tunneling, except the consideration of contraction parameter, the use of soil model should consider the non-linear dependency on soil stiffness and strain amplitude. In this study, the Harding Soil model with small-strain stiffness (HS-small) allows for even more realistic modelling compared with the other models. When executing the numerical analysis for shield tunneling, except the general used Mohr-Coulomb model, it is recommended to check the tunnel deformation behavior with the advanced HS-small model.
論文目次:中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 x
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 1
1.3 研究方法與流程 2
1.4 研究範圍與限制 2
第二章 文獻回顧 5
2.1 隧道開挖變位量探討 5
2.2 岩體波生比與隧道徑向變位量關係 7
2.3 隧道收斂束制法概述 9
2.4 隧道縱向收斂曲線(LCP) 10
2.5 隧道擠壓潛變 13
2.6 隧道全斷面開挖與分階開挖 16
第三章 分析案例之工程背景 19
3.1 臺灣快速公路隧道簡介 19
3.2 隧道之輪進長度 23
3.3 山岳隧道之開挖及支撐 23
第四章 數值分析運算 25
4.1 數值分析軟體簡介 25
4.2 岩體組合律之選用 26
4.3 數值分析之基本假設 27
4.4 材料參數 29
4.4.1 Hoek-Brown模式之岩體參數 29
4.4.2 Mohr-Coulomb模式之岩體參數 29
4.4.3 Hoek-Brown與Mohr-Coulomb兩模式之參數比較與轉換 30
4.4.4 初期支撐之材料參數 32
4.5 分析步驟 32
第五章 數值分析成果 35
5.1 隧道頂拱垂直變位量 35
5.2 正規化後之隧道變位量分析 38
5.3 Mohr-Coulomb模式分析成果 39
5.3.1 隧道頂拱垂直變位量(Mohr-Coulomb模式) 40
5.3.2 正規化後之隧道變位分析(Mohr-Coulomb模式) 41
5.4 Hoek-Brown與Mohr-Coulomb模式數值分析成果比較 43
5.5 山岳隧道數值分析成果重點彙整 46
第六章 數值分析成果與現地監測及文獻資料比對 47
6.1 現地監測資料比對 47
6.1.1 監測斷面工程背景 47
6.1.2 監測資料彙整與比對 48
6.2 文獻資料比對 49
6.2.1 與 Panet及Guenot公式比對 49
6.2.2 與 Carranza-Torres及Fairhurst公式比對 50
6.2.3 與 Unlu及Gercek公式比對 52
6.2.3.1 良好岩體 52
6.2.3.2 中等岩體 53
6.2.3.3 碎弱岩體 53
6.3 數值分析結果與監測值及文獻資料比對重點彙整 54
第七章 數值分析討論 57
7.1 山岳隧道數值分析假設條件 57
7.2 地下水對岩體變形行為之影響 57
7.3 側向應力係數對岩體變形行為之影響 60
7.4 平行隧道岩柱寬度對隧道變形行為之影響 62
7.5 與時間相依之隧道變形行為 64
7.5.1 岩體之擠壓潛變 64
7.5.2 岩體之自立時間 64
第八章 山岳隧道工程之應用 67
8.1 本研究之目的與效益 67
8.2 隧道開挖之應用 67
8.3 隧道支撐之應用 68
8.3.1 隧道支撐離開挖面距離 68
8.3.2 隧道支撐時機 70
第九章 雙圓型潛盾隧道變形行為探討 73
9.1 前言 73
9.2 研究案例之工程背景 73
9.3 DOT潛盾隧道數值分析方法、土體組合律及參數 76
9.3.1 數值分析假設條件 76
9.3.2 土體組合律概述 78
9.3.2.1 Mohr-Coulomb (MC)模式 78
9.3.2.2 Hardening Soil (HS)模式 79
9.3.2.3 Hardening Soil Model with Small-Strain Stiffness (HS-small)模式 80
9.3.3 材料參數 80
9.3.3.1 MC模式之材料參數 80
9.3.3.2 HS模式之材料參數 81
9.3.3.3 HS-small模式之材料參數 81
9.3.3.4 混凝土環片之材料參數 83
9.3.3.5 斷面收縮率 83
9.3.4 數值分析步驟 83
9.4 DOT潛盾隧道數值分析成果 84
9.4.1 隧道縱向變位 84
9.4.2 隧道橫向變位 86
9.4.3 土體材料參數對數值分析之影響 87
9.4.3.1不同E值對沉陷量影響 88
9.4.3.2不同c值對沉陷量影響 88
9.4.3.3不同φ值對沉陷量影響 89
9.4.4 DOT潛盾隧道數值分析成果探討 90
第十章 結論及建議 93
10.1 山岳隧道 93
10.2 雙圓型(DOT)潛盾隧道 94
10.3 建議事項 95
參考文獻 97
附錄
A 臺灣快速公路隧道之概述與展望 101
B 平行隧道於不同岩柱寬度之開挖分析探討 123
C 雙圓型潛盾隧道地表沉陷數值分析 139
符號彙編 159
論文口試意見暨回覆 161
論文參考文獻:參考文獻

1. T. Unlu and H. Gercek, "Effect of Poisson’s ratio on the normalized radial displacements occurring around the face of a circular tunnel," Tunnelling and Underground Space Technology, vol. 18, 2003, pp. 547-553.
2. B.H.G. Brady and E.T. Brown, Rock Mechanics for Underground Mining, 2nd ed., London: Chapman and Hall, 1993.
3. C. Carranza-Torres and C. Fairhurst, "Application of the Convergence-Confinement Method of Tunnel Design to Rock Masses that Satisfy the Hoek-Brown Failure Criterion," Tunnelling and Underground Space Technology, vol. 15, No. 2, 2000, pp. 187-203.
4. M. Panet, Understanding deformations in tunnels. In: Comprehensive Rock Engineering, Vol. 1, London: Pergamon, 1993.
5. M. Panet, Calculus des Tunnels par la Method de Convergence-Confinement , Paris: Presses de I’Ecole Nationale des Pont set Chaussees, 1995.
6. J.C. Chern, F.Y. Shiao and C.W. Yu, "An empirical safety criterion for tunnel construction," Proceedings of the Regional Symposium of Rock Engineering, Taipei, 1998, pp. 222-227.
7. Rasoul Sadeghiyan, Mahmoud Hashemi and Ehsan Moloudi, "Determination of longitudinal convergence profile considering effect of soil strength parameters," International Journal of Rock Mechanics & Mining Sciences, vol. 82, 2016, pp. 10-21.
8. F.I. Shalabi, "FE analysis of time-dependent behavior of tunneling in squeezing ground using two different creep models," Tunnelling and Underground Space Technology, vol. 20, 2005, pp. 271-279.
9. Marcio Muniz de Farias, Alvaro Henrique Moraes Junior, Andre Pacheco de Assis, "Displacement control in tunnels excavated by the NATM: 3-D numerical simulations," Tunnelling and Underground Space Technology, vol. 19, 2004, pp. 283-293.
10. 交通部台灣區國道新建工程局,國道大地工程技術實務,臺北:國道新建工程局,2013,第87-140頁。
11. 交通部台灣區國道新建工程局,北宜高速公路興建專輯(技術版),隧道工程篇,臺北:國道新建工程局,2006,第51-188頁。
12. 交通部台灣區國道新建工程局,第二高速公路興建專輯,隧道及大地工程篇,臺北:國道新建工程局,2004,第68-72頁。

13. 交通部台灣區國道新建工程局,國道6號興建專輯,大地工程及隧道篇,臺北:國道新建工程局,2004,第61-123頁。
14. Z. T. Bieniawski, Engineering rock mass classifications, New York: John Wiley & Sons, 1989, pp.51-68.
15. 交通部台灣區國道新建工程局,隧道施工技術規範,臺北:國道新建工程局,2003,第02403.1-02403.3頁。
16. R.B.J. Brinkgreve, S. Kumarswamy, W.M. Swolfs, Plaxis 3D Anniversary Edition, General Information, Delf, Netherlands: Plaxis B.V., 2015, pp. 10-13.
17. R.B.J. Brinkgreve, S. Kumarswamy, W.M. Swolfs, Plaxis 3D Anniversary Edition, Part 2: Reference Manual, Delf, Netherlands: Plaxis B.V., 2015, pp. 197-201.
18. E. Hoek, C. Carranza-Torres and B. Corkum, "Hoek-Brown failure criterion–2002 Edition," Proceedings of the NARMS-TAC Conference, Toronto, 2002, 1, pp. 267-273.
19. Erik Eberhardt, "The Hoek-Brown Failure Criterion," Rock Mechanics and Rock Engineering, vol. 45, 2012, pp. 981-988.
20. E. Hoek, P.K. Kaiser and W. F. Bawden, Support of Underground Excavations in Hard Rock, London and New York: Taylor & Francis, 2005, pp. 89-98.
21. E. Hoek, Practical Rock Engineering, chapter of rock mass properties. https://www.rocscience.com/documents/hoek/corner/Practical-Rock-Engineering-Full-Text.pdf.
22. R.B.J. Brinkgreve, S. Kumarswamy, W.M. Swolfs, Plaxis 3D Anniversary Edition, Part3: Material Models Manual, Delf, Netherlands: Plaxis B.V., 2015, pp. 45-52.
23. E. Hoek and M. S. Diederichs, "Empirical estimation of rock mass modulus," International Journal of Rock Mechanics and Mining Science, vol. 43, 2006, pp. 203-215.
24. 交通部台灣區國道新建工程局,國道北宜高速公路工程細部設計階段補充地質調查工作大地力學試驗期末報告,臺北:財團法人中興工程顧問社,1993,第14-47頁。
25. 李勝宗,三孔鄰近隧道開挖互制行為探討,碩士論文,國立臺北科技大學土木與防災研究所,臺北,2004。
26. E. Hoek, User’s guide of RockLab-Rock mass strength analysis using the Hoek-Brown failure creterion, Rocscience Inc., 2007, pp. 1-24.
27. 張文城、胡麟吉,「三孔鄰近隧道開挖岩體三維變形行為監測成果之評估」,1996岩盤工程研討會論文集,台北,1996,第181-189頁。
28. S.L. Chen, S.C. Lee and M.W. Gui, "Effect of rock pillar width on the excavation behavior of parallel tunnels," Tunnelling and Underground Space Technology, vol. 24, 2009, pp. 148-154.

29. Richard E. Goodman, Introduction to rock Mechanids, New York: John Wiley & Sons, 1989, pp. 84-173.
30. S.C. Lee, L.B. Chiou and G.F. Lin, "A case study of tunnel excavation adjacent to a steep slope," Proceedings of the World tunnel Congress 2007, Prague, Czech Republic, 2007, pp. 539-544.
31. Van-Manh Nguyen, Quang-Phich Nguyen, "Analytical solution for estimating the stand-up time of the rock mass surrounding tunnel," Tunnelling and Underground Space Technology, vol. 47, 2015, pp. 10-15.
32. T. Ramamurthy, A realistic approach to estimate stand-up time. In: 11th Congress of the International society for Rock Mechanics, Lisbon, Taylor & Francis Group, London, 2007, pp. 757-760.
33. 朱旭、陳俊宏、林建華、姚賜麟,「簡論台北捷運雙圓型潛盾隧道之分析」,地工技術,第118期,2008,第37-46頁。
34. S.L. Chen, M.W. Gui and M.C. Yang, "Applicability of the principle of superposition in estimating ground surface settlement of twin-and quadruple-tube tunnels," Tunnelling and Underground Space Technology, vol. 28, 2012, pp. 135-149.
35. M.W. Gui and S.L. Chen, "Estimation of transverse ground surface settlement induced by DOT shield tunnelling," Tunnelling and Underground Space Technology, vol. 33, 2013, pp. 119-130.
36. R.B.J. Brinkgreve, E. Engin, W.M. Swolfs, Plaxis 3D Reference Manual, Delf, Netherlands: Plaxis B.V., 2012, pp. 147-151
37. R.B.J. Brinkgreve, "Selection of Soil Models and Parameters for Geotechnical Engineering Application," Soil Constitutive Models, Evaluation, Selection and Calibration, Proceedings of GeoFrontiers, ASCE Library, Reston, Virginia, 2005, pp. 69-97.
38. R.B.J. Brinkgreve, E. Engin, W.M. Swolfs, Plaxis 3D Material Models Manual, Delf, Netherlands: Plaxis B.V., 2012, pp. 31-86
39. T. Benz, Small-Strain Stiffness of Soil and its Numerical Consequences, Ph.D. Thesis, University of Stuttgart, Stuttgart, Germany, 2007, 193 p.
40. Gima V. Mathew and Barry M. Lehane, "Numerical back-analyses of greenfield settlement during tunnel boring," Canadian Geotechnical Journal, vol. 50, 2012, pp. 145-152.
41. 柯婉伊,雙圓型潛盾隧道地表沉陷分析之探討—以機場捷運線台北三重段,碩士論文,國立臺北科技大學土木與防災研究所,臺北,2011。
42. 高宗正、陳俊宏、黃南輝,「捷運潛盾隧道穿越機場下方之沉陷控制」,地工技術,第118期,2008,第5-18頁。

43. 孫統立、李浩、呂虎、魏良文,「雙圓盾構施工擾動引起的地表位移特性分析」,土木工程學報報(中國),第42卷第6期,2009,第108-114頁。

44. 楊慕泉,潛盾隧道施工引致地表沉陷之分析探討,碩士論文,國立臺北科技大學土木與防災研究所,臺北,2007。
論文全文使用權限:同意授權於2016-08-18起公開