現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:濱海地區FRP人行道及樁系統之動態數值分析 [以論文名稱查詢館藏系統]
論文英文名稱:Dynamic Numerical Analysis of FRP Boardwalks and Pile System at Coastal Areas [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木工程系土木與防災碩士班
畢業學年度:104
畢業學期:第二學期
中文姓名:張益禎
英文姓名:Yi-Chen Chang
研究生學號:103428041
學位類別:碩士
語文別:中文
口試日期:20160711
指導教授中文名:陳水龍
指導教授英文名:Shong-Loong Chen
口試委員中文名:陳水龍;李有豐;何政道;陳卓然
中文關鍵詞:海岸工程、FRP、樁基礎、棧道
英文關鍵詞:Coastal Engineering, Fiber Reinforced Plastic (FRP), Pile Foundation, Boardwalk
論文中文摘要:本研究緣於金門縣海岸石蚵田觀光棧道興建案例的可行性與規劃。因潮間帶環境具有高腐蝕性與施工難度,環境中又蘊含許多豐富的物種,屬鱟之保育區,故考慮將耐腐蝕、環保、高強度、低費用的維護管理、可模組化施工的纖維強化高分子複合材料(Fiber Reinforced Plastic,FRP),使用於濱海工程上,希望能在嚴峻的環境下有良好的成果,在濱海工程上可以成為取代傳統材料的另一種良好的選擇。
本文提出兩種可能的棧道方案,方案一為使用FRP為棧道主要材料,基樁以FRP外管內填充混凝土,上部結構亦採用FRP的I型梁與棧道面板;方案二,下部結構則為預力混凝土基樁(Pretensioned Spun Concrete Piles)與預鑄混凝土帽梁,僅上部結構採用FRP材料。而FRP材料是一種異向性的材料,所以在此研究中模擬時FRP是以材料設定為異向性進行分析。為兼顧安全與經濟性,須了解在颱風期間浪潮拍打結構物所帶來的受力情形、變形、基樁與土壤的互制行為。
本研究將基樁所受的颱風波浪力轉換為等值海浪外力,並根據現場的鑽探資料與初步結構設計,使用有限元素軟體Plaxis 3D建立模型使用靜態和動態兩種方式進行數值分析,探討基樁及棧道面板受海浪力之行為。期望研究成果可提供海岸類似工程之設計、規劃的參考。
論文英文摘要:This study was designed investigate the feasibility and configuration of building tourism boardwalks around the stone-built oyster fields along the coasts of Kinmen. The highly corrosive nature of tidal zone poses difficulties for construction. However, the tidal zones are also habitats for abundant species and particularly the endangered horseshoe crabs. For this, fiber reinforced plastics (FRPs), which feature resistance to corrosion, environmental friendliness, high strength, low maintenance cost and modular construction, were considered for coastal engineering. The idea was to produce satisfactory results in such a harsh environment. This, if successful, can be an alternative replacement for traditional materials commonly used in coastal engineering.
Two possible boardwalk solutions were proposed in this study. For the first, FRPs were used as the main material and foundation piles were built with external FRP pipes fill with concrete and the superstructure consisted of FRP I-beams and the boardwalk flooring; for the second solution, pre-tensioned spun concrete piles were introduced in conjunction with pre-cast concrete pile caps and only the superstructure was made of FRPs. The FRP is an anisotropic material, and therefore the simulation performed for this study was designed with FRP as an anisotropic material. For both safety and economy, it is necessary to determine the forces, deformation and the constraints between piles and surrounding soil as the waves and tides were pounding on the structures during a typhoon.
The forces on the piles from the waves during a typhoon were converted into equivalent wave forces. Plaxis 3D, a finite element analysis program, was used to build the model based on in-situ boring report and initial structure design, and the numerical analysis was performed both statically and dynamically to determine the behaviors of piles and boardwalk flooring under the wave forces. Hopefully the results may help in terms of the design and configuration in similar coasting engineering projects.
論文目次:中文摘要 i
英文摘要 ii
誌 謝 iv
目 錄 v
表目錄 vii
圖目錄 ix
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的與方法 4
1.3 研究內容與流程 4
第二章 文獻回顧 6
2.1 FRP人行道受波浪的影響 6
2.2 複合樁之類型 6
2.3 FRP複合樁之承載力 8
2.4 波浪相關研究及其誘發負載 13
2.4.1 不同水位高波浪對橋面的影響 13
2.4.2 波浪衝擊力 15
2.4.3 波浪側向力 16
2.4.4 波浪於結構上的動態變化 18
第三章 外力估算方法 21
3.1 承載力估算 21
3.1.1樁長的定義 22
3.2 波浪及水流誘發的負載 22
3.3 靜態外力估算參數 33
3.4 動態外力估算參數 36
第四章 Plaxis程式與有限元素分析方法 40
4.1 前言 40
4.2 有限元素分析方法 41
4.3 土壤模式 43
4.3.1 莫爾–庫倫模式 44
4.3.2 莫爾–庫倫模式輸入參數 47
4.3.3 Plaxis土層材料排水與不排水之設置 48
4.4 模擬基樁之元素 51
4.4.1 3D結構元素與輸入參數 51
4.5 界面元素 54
4.6 Plaxis動態模擬方式 55
第五章 案例介紹與數值模擬 56
5.1 案例概況 56
5.2 棧道設計方案與構件斷面尺寸 60
5.3 FRP材料介紹 63
5.3.1 FRP材料性質介紹 64
5.3.2 FRP構件生產與製造 66
5.4 土層概況 68
5.5 模型所需參數輸入 69
5.4.1 土壤初始應力 69
5.4.2 土壤參數之決定 70
5.4.3 結構參數之決定 72
5.6 外力組合 75
5.7 模擬邊界 78
5.8 Plaxis分析流程 80
第六章 數值模型與分析結果 83
6.1 數值分析 83
6.2 綜合討論 106
第七章 結論與建議 115
7.1 結論 115
7.2 建議 116
參考文獻 117
附 錄 121
A FRP材料測試結果 122
B 潮波流調查資料(節錄) 123
論文參考文獻:1. A. Associates, Plans of Action for Scour Critical Bridges, Idaho Transportation Department, Fort Collins, Colorado, 2004.
2. A. Fam, M. Pando, G. Filz and S. Rizkalla, "Precast Piles for Route 40 Bridge in Virginia Using Concrete Filled FRP Tubes," PCI journal, 2003.
3. A. R. 2A-WSD, "Recommended Practice for Planning, Designing and Constructing Fixed Offshore PlatformPlatforms—Working Stress Design", 2000.
4. B. B. Broms, "Lateral Resistance of Piles in Cohesionless Soils," Journal of the Soil Mechanics and Foundations Division, vol. 90, no. 3, 1964, pp. 123-158.
5. B. T. Kim, N.-K. Kim, W. J. Lee and Y. S. Kim, "Experimental Load–Transfer Curves of Laterally Loaded Piles in Nak-Dong River Sand," Journal of Geotechnical and Geoenvironmental Engineering, vol. 130, no. 4, 2004, pp. 416-425.
6. B. W. Melville, "Scour at bridge sites," CompanyCivil Enginering Practice (eds N.P.Cheremisinoff and S.L. Cheng P.N.Cheremisinoff, ed.), USA: Technomic Publishing, 1988.
7. DNV, "Recommended Practice DNV-RP-C205", 2010.
8. E. Guades, T. Aravinthan, M. Islam and A. Manalo, "A review on the driving performance of FRP composite piles," Composite Structures, vol. 94, no. 6, 2012, pp. 1932-1942.
9. H. A. Shaia, Behaviour of Fibre Reinforced Polymer Composite Piles: Experimental and Numerical Study, Ph.D. Thesis, University of Manchester, U. K., 2013.
10. H. G. Poulos, "Behavior of Laterally Loaded Piles : I-Single Piles," Journal of Soil Mechanics and Foundations Division, vol. 97, no. 5, 1971, pp. 711-731.
11. J. A. Focht and V. N. Vijayvergiya, "A New Way to Predict Capacity of Piles in Clay," Paper presented at the Offshore Technology Conference, Houston, Texas, 1972.
12. J. A. Paduana and W. S. Yee, "Lateral Load Test on Piles in Bridge Embankments," Transportation Research Board, 1974, pp. pp 77-92.
13. J. D. Fenton and W. D. McKee, "On calculating the lengths of water waves," Coastal Engineering, vol. 14, no. 6, 1990, pp. 499-513.
14. J. Han, J. D. Frost and V. L. Brown, "Design of Fiber-Reinforced Polymer Composite Piles Under Vertical and Lateral Loads," Paper presented at the Transportation Research Record, 2003, pp. 71-80.
15. J. Jaky, "The Coefficient of Earth Pressure at Rest," Journal of the society of Hungarian Architects and Engineers, vol. 78, no. 22, 1944, pp. 355-358.
16. K. Irschik, U. Sparboom, H. oumeraci, "Breaking Wave Loads on A Slender Pile in Shallow Water," Coastal Engineering, 29th, 2004.
17. L. Bonakdar, H. Oumeraci and A. E. Shahidi, " Wave load formulae for prediction of wave-induced forces on a slender pile within pile groups," Coastal Engineering, vol. 102, 2015, pp. 49-68.
18. L. HAMILL, Bridges Hydraulics, London and New York: E & F Spon, 1999.
19. M. A. Chella, A. Tørum and D. Myrhaug, "An Overview of Wave Impact Forces on Offshore Wind Turbine Substructures," Energy Procedia, 20th, 2012, pp. 217-226.
20. M. A. Pando, C. D. Ealy, G. M. Filz, J. J. Lesko and E. J. Hoppe, A Laboratory and Field Study of Composite Piles for Bridge Substructures (FHWA-HRT-04-043), Virginia Transportation Research Council, 2006.
21. M. D. Braja, Principles of Foundation Engineering, 6th, 2007.
22. M. F. Randolph, "The Response of Flexible Piles to Lateral Loading," Geotechnique, vol. 31, no. 2, 1981, pp. 247-259.
23. M. Hetenyi, Beams on Elastic Foundation,the University of Michigan Press, Ann Arbor, Michigan, 1946.
24. M. M. Jensen and M. W. Denny, " Experimental determination of the hydrodynamic forces responsible for wave impact events," Journal of Experimental Marine Biology and Ecology, vol. 469, 2015, pp. 123-130.
25. M. T. Davisson, "Lateral Load Capacity Piles," National Academy of Science, no. 333, 1970, pp. 104-112
26. PLAXIS, "Material Models Manual," PLAXIS 3D Manuals, 2013.
27. PLAXIS, PLAXIS 3D Manuals, 2013.
28. R. F. Scott, "Foundation Analysis," Englewood Cliffs, N. J.: Prentice-Hall, Inc., 1981.
29. R. G. Bea, T. Xu, J. Stear and R. Ramos, "Wave Forces on Decks of Offshore Platforms," Journal of Waterway, Port, Coastal, and Ocean Engineering © ASCE, vol. 125, no. 3, 1999, pp. 136-144.
30. R. Krishnan, G. Gazetas and A. Velez, "Static and Dynamic Lateral Deflexion of Piles in Nonhomogeneous Soil Stratum," Geotechnique, vol. 33, no. 3, 1983, pp. 307-325.
31. S. J. Choi, K. H. Lee and O. T. Gudmestad, "The effect of dynamic amplification due to a structures vibration on breaking wave impact," Ocean Engineering, vol. 96, 2015, pp. 8-20.
32. S. Timoshenko, "Strength of Materials," Huntington, New York: Krieger Co., 1956.
33. T. Sarpkaya, "Vortex shedding and resistance in harmonic flow about smooth and rough circular cylinders," Proc.Int.Conf.Boss, 1976.
34. W. Huang and H. Xiao, "Numerical Modeling of Dynamic Wave Force Acting on Escambia Bay Bridge Deck during Hurricane Ivan," Journal of Waterway, Port, Coastal, and Ocean Engineering © ASCE, vol. 135, no. 4, 2009, pp. 164-175.
35. 王揚宇,「礁溪五股橋明年重建 先封橋挨轟」,自由時報,2014(05月14日)。取自http://news.ltn.com.tw/photo/local/paper/464393
36. 林靈,「損壞九月不處理 美麗海景木棧道好危險」,蘋果即時,2015(07月09日)。取自http://www.appledaily.com.tw/realtimenews/article/new/20150709/644857/
37. 陳碧蓮,「木棧道腐蝕坑洞多 單車道沒人騎」,TVBS新聞,2011(12月08日)。取自http://news.tvbs.com.tw/old-news.html?nid=75207
38. 黃玿琮,「潭雅神自行車道多處木棧道損壞 影響騎車安全」,今日新聞,2015(8月22日)。取自http://www.nownews.com/n/2015/08/20/1789025
39. 謝鳳秋,「公園木棧道壞 石頭竹竿示警恐害摔」,自由時報,2014(03月30日)。取自http://news.ltn.com.tw/news/local/paper/766351
40. S.Badjie,以有限元素及理論分析進行 FRP 人行橋力學行為之研究,碩士論文,國立臺北科技大學土木工程系土木與防災碩士班,臺北,2014。
41. 大地工程學會,樁基礎篇,載於建築物基礎構造設計規範,2001。
42. 交通部,公路橋梁設計規範,2009。
43. 吳俊寬,離岸風機海底基樁設計之研究,碩士論文,國立臺灣大學工程科學及海洋工程學系,2011。
44. 李有豐,纖維強化高分子 複合材料於土木與建築工程之應用,臺灣區複合材料工業同業公會,2012。
45. 東泰工程,「金門縣金寧鄉古寧頭海域潮間帶鑽探工作之地基調查報告書」,2014。
46. 林玠均,金門海濱石蚵人行道及樁系統之數值分析,碩士論文,國立臺北科技大學土木工程系土木與防災碩士班,臺北,2015。
47. 金偉良,波浪荷載,載於工程荷載組合理論與應用,北京市:機械工業,2006,第336-379頁。
48. 施國欽,大地工程學(二)-基礎工程篇(第5版),2010。
49. 洪廷瑋,地中壁支撐連續壁之效能分析,碩士論文,國立臺北科技大學土木與防災研究所,臺北,2009。
50. 翁慶隆,「FRP複合材料介紹與製程技術」(簡報),新式材料工法在水庫蓄水範圍及其上游主流河道治理工程之運用研究 研討會, 經濟部水利署北區資源局 主辦,臺北,2014 (11月10日)。
51. 高家俊與鄒嘩明,「垂直柱體在波浪中所受之側向力」,第八屆海洋工程研討會,1985,第151-172頁。
52. 國立中山大學,金門海岸基本資料監測調查(1/2),臺東:經濟部水利署第八河川局,2014。
53. 國立中山大學,金門海岸基本資料監測調查計畫,臺東市:經濟部水利署第八河川局,2011。
54. 國立臺北科技大學零碳建築研究中心,「纖維強化高分子複合材料(Fiber Reinforced Plastic, FRP)應用於國家公園人行棧道可性評估」, 內政部營建署,2012。
55. 郭一羽(主編),海岸工程學,新竹市:文山書局,2003。
56. 陳信宏、楊瑞源、黃煌煇與尤上林,「金門跨海大橋橋墩地形沖刷與保護工安定研究」,港灣報導,第92期,2012,第1-9頁。
57. 曾志煌、翁國和、徐順憲、李賢華、陳素惠與蕭清木等人,港灣構造物設計基準修訂(上、下冊),臺北市:交通部運研所,2005。
58. 黃政彰,浮體式風力機之動態響應研究,碩士論文,國立台灣大學工學院工程科學及海洋工程學研究所,臺北,2013。
59. 謝榮華,波浪作用下垂直與水平柱體受力行為及減力設施之實驗研究,碩士論文,國立中山大學海洋環境及工程學系,高雄,2001。
論文全文使用權限:同意授權於2016-08-08起公開