現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:外力載重作用下穩態反應之過衝行為及其補救措施 [以論文名稱查詢館藏系統]
論文英文名稱:Overshooting in Steady-State response and its Remedy [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木工程系土木與防災碩士班
畢業學年度:104
畢業學期:第二學期
中文姓名:楊預立
英文姓名:Yu-Li Yang
研究生學號:103428087
學位類別:碩士
口試日期:2016/06/23
指導教授中文名:張順益
口試委員中文名:尹世洵;簡文郁
中文關鍵詞:結構相依逐步積分法過衝行為局部截斷誤差強迫振動反應
英文關鍵詞:structure-dependent integration methodovershootinglocal truncation errorforced vibration response
論文中文摘要:結構相依逐步積分法會在高頻振態的穩態反應發生異常過衝行為。由於逐步積分法大部分都是利用自由振動反應來進行分析,而在自由振動反應中通常會忽略外力的影響,因此必須針對強迫振動反應分析進行探討。在強迫振動反應分析時,會因為外力作用的影響而發生異常的過衝行為,因此通過強迫振動反應分析所推導出的局部截斷誤差,來檢測出此異常的過衝行為。此外,為了能消除因外力作用所引起的異常過衝行為,本研究開發一種補救措施,此補救措施是在位移增量差分方程中加入一個載重相依的項,可以有效消除在高頻振態的穩態反應所發生異常過衝行為,使積分法可以在強迫振動反應分析中有準確的積分。
論文英文摘要:An unusual overshooting behavior might experience in the forced response of a high frequency mode for a structure-dependent integration method. This difficulty cannot be detected by a free vibration local truncation error while it can be thoroughly explained by a forced vibration local truncation error. In addition, this local truncation error can be applied to develop a remedy to eliminate the adverse overshooting behavior in the steady-state response of a high frequency mode. This remedy can be achieved by adding a loading term into the difference equation for displacement increment. In addition to the analytical study, the analytical results are also confirmed by numerical examples.
論文目次:目 錄

中文摘要 i
英文摘要 ii
誌謝 iii
目 錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.3 研究內容 3
第二章 過衝行為 5
2.1 過衝的概念 5
2.2 檢測過衝行為 8
2.3 強迫振動反應分析 13
第三章 局部截斷誤差 26
3.1 積分方法的數值特性 26
3.2 局部截斷誤差 28
3.2.1 自由振動局部截斷誤差 29
3.2.2 強迫振動局部截斷誤差 31
3.3 高頻振態之穩態反應的異常過衝行為 33
第四章 消除誤差項的方法 36
4.1 消除誤差項 36
4.1.1 CFM1的改善方法 36
4.1.2 CFM2的改善方法 38
4.2 修正積分方法 40
第五章 數值論例 47
5.1 雙自由度系統 47
5.1.1 CFM1與CFM2的過衝行為 52
5.1.2 MCFM1 52
5.1.3 MCFM2 54
5.2 十層樓建築物-多自由度系統應用 56
5.3 任意動態載重 59
第六章 結論 71
參考文獻 72
論文參考文獻:1. Zienkiewicz OC. The Finite Element Method, McGraw-Hill Book Co (UK) Ltd. Third Edition,1977.
2. Belytschko T, Hughes TJR. Computational Methods for Transient Analysis, Elsevier Science Publishers B.V., North-Holland, 1983.
3. Hughes TJR. The Finite Element Method, Englewood Cliffs, NJ, USA: Prentice-Hall, Inc.;1987.
4. Bathe KJ. “Finite Element Procedure in Engineering Analysis,” Englewood Cliffs, NJ, USA:Prentice-Hall, Inc.; 1996.
5. Har J, Tamma KK. Advances in Computational Dynamics of Particles, Materials and Structures, John Wiley & Sons Inc., 2012.
6. Chang SY. “A new family of explicit method for linear structural dynamics,” Computers & Structures, Vol. 88, No.11-12, 2010, pp.755-772.
7. Newmark NM. “A method of computation for structural dynamics.” Journal of Engineering Mechanics Division, ASCE; Vol. 85, 1959, pp. 67-94.
8. Bathe KJ, Wilson EL. “Stability and accuracy analysis of direct integration methods,” Earthquake Engineering and Structural Dynamics, Vol. 1, 1973, pp. 283-291.
9. Bathe KJ, Baig MMI. “On a composite implicit time integration procedure for nonlinear dynamics.” Computers and Structures, Vol. 83, 2005, pp. 2513–2534.
10. Chang SY. “Explicit pseudodynamic algorithm with unconditional stability,” Journal of Engineering Mechanics, ASCE, Vol. 128, No.9, pp. 935-947, 2002.
11. Chang SY. “Studies of Newmark method for solving nonlinear systems: (I) basic analysis,” Journal of the Chinese Institute of Engineers, Vol. 27, No. 5, 2004, pp. 651-662.
12. Chang SY. “An explicit method with improved stability property,” International Journal for Numerical Method in Engineering, Vol. 77, No. 8, 2009, pp.1100-1120.
13. Chang SY. “A family of non-iterative integration methods with desired numerical dissipation,”International Journal of Numerical Methods in Engineering, Vol. 100, No. 1, 2014, pp. 62-86.
14. Chang, SY. “Family of structure-dependent explicit methods for structural dynamics,” Journal of Engineering Mechanics, Vol. 140 No. 6, 06014005, 2014.
15. Chung J, Hulbert GM. “A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-αmethod,” Journal of Applied Mechanics, Vol.60, No. 6, 1993, pp. 371-375.
16. Hilber HM, Hughes TJR, Taylor RL. “Improved numerical dissipation for time integration algorithms in structural dynamics,” Earthquake Engineering and Structural Dynamics,Vol. 5, 1977, pp. 283-292.
17. Houbolt JC. “A recurrence matrix solution for the dynamic response of elastic aircraft,” Journal of the Aeronautical Sciences, Vol. 17, 1950, pp. 540-550.
18. Tamma KK, Zhou X, Sha D. “A theory of development and design of generalized integration operators for computational structural dynamics,” International Journal for Numerical Methods in Engineering, Vol. 50, 2001, pp. 1619-1664.
19. Wilson EL, Farhoomand I, Bathe KJ. “Nonlinear dynamic analysis of complex structures,”Earthquake Engineering and Structural Dynamics, Vol. 1, 1973, pp. 241-252.
20. Wood WL, Bossak M, Zienkiewicz OC. “An alpha modification of Newmark’s method,”International Journal for Numerical Methods in Engineering, Vol. 15, 1981, pp. 1562-1566.
21. Zhou X, Tamma KK. “Design, analysis, and synthesis of generalized single step single solve and optimal algorithms for structural dynamics.” International Journal for Numerical Methods in Engineering, Vol. 59, 2004, pp. 597–668.
22. Hilber HM. Analysis and Design of Numerical Integration Methods in Structural Dynamics,University of California, Berkeley, EERC 76-29, 1976, pp. 21.
23. Hilber HM, Hughes TJR. “Collocation, dissipation, and ‘overshoot’ for time integration schemes in structural dynamics,” Earthquake Engineering and Structural Dynamics, Vol. 6, 1978, pp. 99-118.
24. Chang SY. “Accurate representation of external force in time history analysis,” Journal of Engineering Mechanics, ASCE, Vol. 132, No. 1, 2006, pp. 34-45.
25. Goudreau GL, Taylor RL. “Evaluation of numerical integration methods in elasto-dynamics,” Computer Methods in Applied Mechanics and Engineering, Vol. 2, 1972, pp. 69-97.
26. Chen C, Ricles JM. “Development of direct integration algorithms for structural dynamics using discrete control theory,” Journal of Engineering Mechanics, ASCE, Vol. 134, No.8, 2008, pp.676-683.
27. Kolay C, Ricles JM. “Development of a family of unconditionally stable explicit direct integration algorithms with controllable numerical energy dissipation.” Earthquake Engineering and Structural Dynamics; Vol.43, 2014, pp. 1361–1380.
論文全文使用權限:同意授權於2016-07-28起公開