現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:水梯田水土保持功能影響因子探討 -以雙溪集水區為例 [以論文名稱查詢館藏系統]
論文英文名稱:Factors Affecting Soil and Water Conservation of Terraced Paddy Fields of Shuangxi Watershed [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木工程系土木與防災碩士班(碩士在職專班)
畢業學年度:103
畢業學期:第二學期
中文姓名:許朝陽
英文姓名:Chao-Yang Hsu
研究生學號:102428071
學位類別:碩士
語文別:中文
口試日期:2015/07/11
指導教授中文名:陳世楷
指導教授英文名:Shin-Kai Chen
口試委員中文名:陳世楷、 朱子偉、張誠信、高雨瑄
中文關鍵詞:水梯田、河階田、休耕田、土壤沖蝕、地下水補注、入滲
英文關鍵詞:Terraced Paddy Field, River Terrace, Set-aside Land, Soil erosion, Groundwater Recharge, Infiltration
論文中文摘要:為探討水田的地下水補注功能及相關機制,再配合實驗參數分析土壤沖蝕量,本研究選定新北市貢寮區之兩處水田(實驗田A為山坡地水梯田/休耕田,實驗田B為洪泛平原之河階田)進行現地試驗,並採用水收支法分析水田入滲及地下水補注機制。現地量測包括減水深分析、垂直入滲、土壤成分/水力傳導係數調查、土壤水分飽和度量測等相關試驗,並綜合以上數據,藉由土壤流失公式(USLE)以估算每年土壤沖蝕量。最後再配合當地田區狀況與田埂類型對水田入滲進行地下水補注分析及量化評估。
實驗田A與實驗田B之淺層土壤性值分別以砂質壤土及壤土為主,實驗田A之水梯田平均整體入滲率為7.72mm/day,埂間滲漏/側滲約為垂直入滲率3~10倍,實驗田B則為11.29mm/day,埂間滲漏/側滲約為垂直入滲率4~6倍。土壤水分飽和度分析結果顯示位於田埂內側交界處往下量測之飽和度幾乎皆為100%,高於田區內量測之數據,表示田區湛水易循田區內田埂內側邊界滲漏至深層土壤。藉由定水頭K值試驗,其牛踏層平均為0.09cm/day,未翻耕層為0.229cm/day,證明牛踏層透水性極低,會阻礙水分在土壤間的垂直流動。此外田區A之休耕田已休耕三十年以上,其垂直入滲率遠高於周邊水梯田及下游河階田,其結果驗證土壤含水量與入滲量會呈現負相關的現象。實驗田A及實驗田B之地下水年補注量保守估計分別為2,849mm及3,776mm,為當地年均降雨量5,146mm之53.3% 及73.3%,其補注效益皆遠較其他研究報告所指出之平地水田或坡地其他非湛水的土地利用顯著。最後整合現地數據配合USLE推估田區土壤沖蝕量,實驗田A之水梯田年沖蝕量為77.98ton/ha-year,而若田區棄耕呈現裸土時,則年沖蝕量則增加到2290.68ton/ha-year,結果表示水稻梯田相較於休耕梯田具有良好的攔砂能力,得以減少土壤侵蝕的程度,對於治山防洪及水土保持皆有一定的貢獻。
論文英文摘要:Terraced paddy fields play a significant role in soil and water conservation in mountainous areas. Yet, detailed experimental data to confirm this function is missing, as well as an identification of the most decisive factors for infiltration, groundwater recharge and soil erosion. Therefore, the objective of this study was to quantify groundwater recharge in terraced paddies both experimentally and by related water budget method. The in-situ measurements including water requirement rate, vertical infiltration rate, soil textures, hydraulic conductivity and soil moisture of different soil layers were investigated in two experimental terraced paddy fields (there were two regions on experimental field A(FA), one was terraced paddy field at slopeland and another was set-aside land, and experimental field B(FB) was flood plain) on Gongliao District of New Taipei City.
The average field infiltration rate in FA maintenance was 7.72mm/day. The under-bound percolation rate was 3-10 times as high as vertical infiltration rate. In FB, The average field infiltration rate was 11.29mm/day. The under-bound percolation rate was 4-6 times higher than vertical infiltration rate. Soil moisture analysis showed that the saturations were near 100% at inside edge of the bounds, higher than the measurements at block center, indicating that ponding water trend to percolate through inside edge of the bounds to deep soil layer. In addition, using constant head permeability test showed that the average plow sole infiltration rate was 0.09cm/day and the average non-puddled subsoil infiltration rate was 0.229cm/day. The result indicated that water was difficult vertical infiltration in plow sole layer. The amount of groundwater recharge of FA and FB were estimated as 2,849 and 3,776mm/year, account for local average annual rainfall were 53.3% and 73.3%, respectively. Recharge benefits are far more significant than for lowland paddy fields or other land uses on slope with no ponding water recorded in other studies. Finally, intergrated data to estimate the amount of field soil erosion with the Universal Soil Loss Equation (USLE), and the field soil losses in FA was 77.98ton/ha-year. If field was abandoned to become bare soil, the field soil losses will increase to 2290.68ton/ha-year. The conclusion showed that the maintenance of terraced paddy field strengthen not only sediment trapped but also soil and water conservation.
論文目次:目錄

摘 要 i
ABSTRACT iii
誌謝 v
目錄 vi
表目錄 ix
圖目錄 xi
第一章 緒論 1
1.1前言 1
1.2研究目的 2
1.3論文架構與流程 3
第二章 文獻回顧 5
2.1水田入滲補注地下水相關文獻 5
2.2水田入滲機制與田埂調洪/灌溉相關文獻 7
2.2.1牛踏層形成/對入滲之影響 7
2.2.2埂間滲漏機制與量化研究 7
2.2.3水力傳導係數/土壤結構影響入滲之相關文獻 9
2.2.4田埂高度與水田灌溉/調洪相關文獻 10
2.3土壤沖蝕探討及估算等相關文獻 11
2.3.1水田土壤沖蝕分析探討 11
2.3.2土壤沖蝕推估相關探討 12
第三章 材料與方法 15
3.1實驗田區概述 15
3.2水梯田環境概述 18
3.2.1水稻田土壤分層剖面分析 18
3.3水梯田水收支理論 20
3.4土壤水力傳導係數與田區滲流理論 22
3.4.1土壤水分的能量觀念 22
3.4.2飽和水力傳導係數理論 23
3.4.3水梯田田區內垂直入滲與田埂垂直滲漏/側滲理論 25
3.4.4水梯田地下水流動模式 26
3.5通用土壤流失公式相關簡介 28
3.6現地實驗方法與步驟 35
3.6.1減水深試驗 35
3.6.2雙環定水頭入滲試驗 37
3.6.3現地土壤水分含量量測 39
3.6.4土壤分層成份調查 40
3.6.5定水頭水力傳導係數分析試驗 43
第四章 結果與討論 46
4.1試驗地區水田環境調查 46
4.2土壤分層取樣及成分分析 50
4.3土壤水力傳導係數(K值)分析 50
4.4土壤水分飽和度分析 54
4.5水梯田入滲補注機制綜合分析 62
4.5.1田區垂直入滲及埂間滲漏/側滲比較分析 62
4.5.2探討水梯田入滲補注之影響因子 70
4.5.3水梯田入滲補注地下水綜合討論 72
4.6水梯田土壤沖蝕防治功能分析 73
4.6.1 USLE參數推估 73
4.6.2土壤沖蝕估算 76
4.6.3水梯田土壤沖蝕之綜合探討 79
第五章 結論與建議 81
5.1結論 81
5.2建議 83
參考文獻 84
附錄 93;表目錄

表3.1土壤結構參數表 31
表3.2土壤滲透性參數表 31
表3.3對應坡度之指數值 32
表3.4適用於台灣的不同地表及植被狀況的作物與管理因子C 值 34
表3.5適用於台灣不同水土保持措施及坡度之P 因子 35
表4.1實驗田A(水梯田)定水頭K值量測結果(cm/day) 52
表4.2實驗田A(休耕田)定水頭K值量測結果(cm/day) 52
表4.3實驗田B(河階田)定水頭K值量測結果(cm/day) 52
表4.4實驗田A(水梯田)田區及田埂飽和度量測結果(%) 57
表4.5實驗田A(水梯田)田埂水分飽和度量測結果(%) 57
表4.6實驗田B(河階田)田區及田埂飽和度量測結果(%) 58
表4.7實驗田B(河階田)田埂水分飽和度量測結果(%) 58
表4.8 實驗田A減水深試驗結果(mm/day) 65
表4.9實驗田B減水深試驗結果(mm/day) 66
表4.10實驗田A(水梯田)雙環定水頭入滲試驗結果(mm/day) 66
表4.11實驗田A(休耕田)雙環定水頭入滲試驗結果(mm/day) 66
表4.12實驗田A(河階田)雙環定水頭入滲試驗結果(mm/day) 67
表4.13鄰近雨量站降雨沖蝕指數表 74
表4.14實驗田降雨沖蝕指數推估結果 74
表4.15實驗田土壤分析結果 75
表4.16土壤沖蝕指數計算結果 75
表4.17 坡長因子(L)計算結果 75
表4.18 坡度因子(S)計算結果 76
表4.19實驗田區土壤沖蝕量推估 77
表4.20地表覆蓋種類C值和P值關係 77
表4.21實驗田區土壤沖蝕量推估 78
表4.22地表覆蓋種類C值和P值關係 78
表4.23實驗田區土壤沖蝕量推估 78
表4.24地表覆蓋種類C值和P值關係 79
表4.25實驗田區土壤沖蝕量推估 79


 ;圖目錄

圖1.1研究流程圖 4
圖3.1實驗田之地理位置 16
圖3.2實驗田A水梯田實景 17
圖3.3實驗田A休耕田實景 17
圖3.4實驗田B河階田實景 18
圖3.5水田土壤分層剖面示意 19
圖3.6水田表土季節性開裂情形 20
圖3.7水稻梯田水收支平衡模式示意圖 22
圖3.8不同土壤之飽和水力傳導係數範圍與量測方法 24
圖3.9水梯田田區垂直入滲與田埂垂直入滲/側滲示意 26
圖3.10水田滲漏水流動模式 27
圖3.11水田側滲水流動模式 28
圖3.12台灣等降雨沖蝕指數圖 30
圖3.13入流口實景(以實驗田A為例) 36
圖3.14以浮球式水尺進行減水深試驗 37
圖3.15敲打雙環入土層之實景 38
圖3.16水田雙環定水頭入滲試驗 39
圖3.17土壤水分飽和度量測 40
圖3.18土壤分層採樣 41
圖3.19土壤搖篩分析 41
圖3.20土樣置入分散劑溶液 42
圖3.21土壤比重計試驗 42
圖3.22 USDA土壤質地三角圖 43
圖3.23以採樣器採集不擾動土樣 44
圖3.24浸泡未飽和的土樣 44
圖3.25定水頭測定儀 45
圖3.26土體湛水滲入虹吸管 45
圖4.1水梯田利用田埂缺口進行越田漫灌實景 48
圖4.2水梯田棄耕後形成芒草梯田實景 48
圖4.3水梯田休耕後田埂逐漸銷蝕情景 49
圖4.4水梯田休耕後崩塌之情形 49
圖4.5不擾動土採樣位置示意圖(未按比例尺) 51
圖4.6實驗田A(水梯田) K值數據分析(中階坵塊) 53
圖4.7實驗田A(水梯田) K值數據分析(下階坵塊) 53
圖4.8實驗田A(休耕田) K值數據分析 54
圖4.9實驗田B(河階田) K值數據分析 54
圖4.10水分分布量測位置示意(未按比例尺) 56
圖4.11實驗田A(水梯田)上階坵塊飽和度-深度關係 59
圖4.12實驗田A(水梯田)中階坵塊飽和度-深度關係 59
圖4.13實驗田A(水梯田)下階坵塊飽和度-深度關係 60
圖4.14實驗田A(水梯田)田埂飽和度-深度關係 60
圖4.15實驗田B(河階田)上階坵塊飽和度-深度關係 61
圖4.16實驗田B(河階田)下階坵塊飽和度-深度關係 61
圖4.17實驗田B(河階田)田埂飽和度-深度關係 62
圖4.18實驗田A田埂維護前田區整體入滲率與雙環垂直入滲試驗結果比較 67
圖4.19實驗田A田埂維護後田區整體入滲率與雙環垂直入滲試驗結果比較 68
圖4.20實驗田B田區翻耕前田區整體入滲率與雙環垂直入滲試驗結果比較 68
圖4.21實驗田A水梯田/休耕田、河階田田區內平均入滲率結果比較 69
圖4.22實驗田A(水梯田)滲漏點示意圖 69
圖4.23實驗田A田埂邊坡維護前、後之田區整體入滲率比較 70
圖4.24雨量站與實驗田位置圖 74
論文參考文獻:參考文獻

1. Barnett, A.P., Rogers, J.S., 1966. Soil physical properties related to runoff and erosion from artificial rainfall. Trans. ASAE 9:123-128.
2. Bouman, B.A.M., Peng, S., Castaneda, A.R., Visperas, R.M., 2005. Yield and water use of irrigated tropical aerobic rice systems. Agricultural Water Manage, 74,pp87-105.
3. Chen S. K. and Liu C. W., 2002a. Analysis of Water Movement in the Paddy Rice Fields, (I) Experimental Study, Journal of Hydrology, 260, pp206-215.
4. Chen S. K., Jang C. S., Chen S. M., Chen K. H., 2013. Effect of N-fertilizer application on return flow water quality from a terraced paddy field in Northern Taiwan, Paddy Water Environ. 11:123-133.
5. Chen S. K., Liu C. W. and Hwang H.C., 2002. Analysis of Water Movement in the Paddy Rice Fields, (II) Numerical Simulation, Journal of Hydrology, 268, pp259-271.
6. Chen, S. K., Chen, R. S., Yang, T.Y., 2014. Application of a tank model to assess the flood-control function of a terraced paddy field. Hydrological Sciences Journal, 59 (5), 1020–1031.
7. Chen, S. K., Liu, C. W., Chen, Y. R., 2012. Assessing soil erosion in a terraced paddy field using experimental measurements and universal soil loss equation. Catena 95, 131–141.
8. Darcy, H., 1856. Les Fontaines Publigue de la ville de Dijon. Dalmont. Paris.
9. Hafeez, M. M., Bouman, B.A.M., Van de Giesen, N., Vlek, P., 2007. Scale effects on water use and water productivity in a rice-based irrigation system (UPRIIS) in the Philippines. Agricultural Water Manage, 92, pp81-89.
10. Hamada, H., Komae, T., 1998. Analysis of recharge by paddy field irrigation using 222Rn concentration in groundwater as indicator. Journal of Hydroly 205, pp92-100.
11. He, X., Tang, K., Zhang, X., 2004. Soil erosion dynamics on the Chinese Loess Plateau in the last 10,000 years. Mt. Res. Dev. 24 (4), 342–347.
12. Huang, H. C., Liu, C. W., Chen, S. K., Chen, J. S., 2003. Analysis of percolation and seepage through paddy bunds. Journal of Hydrol. 284, pp13-25.
13. Huang, M., Zhang, L., Gallichand, J., 2003. Runoff responses to afforestation in a watershed of the Loess Plateau, China. Hydrol. Process. 17 (13), 2599–2609.
14. Jin, C. G., Young, O. C., Chul, C. K., Uong, C. C., 2010. Predicting Soil Erosion by Change of Land-Cover and Rainfall Using the Revised Universal Soil Loss Equation. Proceedings.
15. Kim, T.C., Gim, U.S., Kim, J.S., Kim, D.S., 2006. The multi-functionality of paddy farming in Korea. Paddy Water Environment 4, 169–179.
16. Klute, A., Dirksen, C., 1986. Hydraulic conductivity and diffusivity:Laboratory methods. In:A. Klute (Ed.), Methods of Soil Analysis. Part 1. Monograph 9. American Society of Agronomy.Madison, WI.
17. Koulouri, M., Giourga, Chr., 2007. Land abandonment and slope gradient as key factors of soil erosion in Mediterranean terraced l- ands, CATENA(69) pp.174-181.
18. Kukal, S. S., Aggarwal, G. C., 2002. Percolation losses of water in relation to puddling intensity and depth in a sandy loam rice (Oryza sativa) field, Agricultural Water Manage., 57, 2002, pp49-59.
19. Li, W., Fan, W., Mao, X., Zhao, L., 2014. Soil Erosion Research Based on RS and USLE in Great Khinggan. Advanced Materials Research Vols. 864-867. pp 2799-2803
20. Liang, X. Q., Li, H., Chen, Y. X., He, M. M., Tian, G. M., Zhang, Z. J., 2008. Nitrogen loss through lateral seepage in near-trench paddy fields, Journal of Environmental Quality, 37, pp712-717.
21. Lin, L. L., Tu, Y. T., Tsai, Y. Z., 2001. A study of soil and water losses on steep sloping tea plantations with six conservation practices. Journal of Chinese Soil and Water Conservation 33 (1), 15–24.
22. Lin, L., Zhang, Z., Manon, J., Bernd, L., 2013. Infiltration properties of paddy fields under intermittent irrigation, Paddy Water Environ 12:17-24.
23. Liu, C. W., Zhang, S. W., Lin, K. H., Lin, W. T., 2010. Comparative analysis of temporal changes of multifunctionality benefit of two major rice paddy plains in Taiwan. Paddy and Water Environment 8, 199–205.
24. Liu, C.W., Huang, H. C., Chen, S. K., Kuo, Y. M., 2004. Subsurface return flow and groundwater recharge of terrace fields in northern Taiwan. Journal of the American Water Resources Association 40 (3), 603–614.
25. López-Vicente, M., Poesen, J., Navas, A., Gaspar, L., 2013. Predicting runoff and sediment connectivity and soil erosion by water for different land use scenarios in the Spanish Pre-Pyrenees. Catena 102, 62–73.
26. Matsuno, Y., Nakamura, K., Masumoto, T., Matsui, H., Kato, T., Sato, Y., 2006. Prospects for multifunctionality of paddy rice cultivation in Japan and other countries in monsoon Asia. Paddy and Water Environment 4, 189–197.
27. Mbagwu, J. S. C., 1995. Saturated hydraulic conductivity in relation to physical properties of soils in the Nsukka Plains, southeastern Nigeria, Geoderma, 68:51-66.
28. Middleton, H.E., 1930. Properties of soils which influence soil erosion. Tech. Bull. No.178. Washington, DC. USDA.
29. Moorman, F. R., N. van Breemen., 1978. Rice: soil, water, land. International Rice Research Institute, Los Baños, Philippines. 185 pp.
30. Musgrave, G. W.,1955, How much of the rain enters the soil. U. S. D. A. yearbook, water: 151-159.
31. Olson, T.C., Wischmeier, W. H., 1963. Soil erodibility evaluations for soils on the run-off and erosion stations. Soil Sci. Soc. Am. Proc. 27: 590-592.
32. Painuli, D. K., Woodhead, T., Pagliai, M., 1988. Effective use of energy and water in rice–soil puddling. Soil Till. Res. 12, pp149-161.
33. Philip, J. R., 1985. Approximate analysis of the borehole permeameter in unsaturated soil.Water Resour. Res., 21(7), 1025-1033.
34. Pugnaire, F. I., Luque, M. T., Armas, C., Gutiérrez, L., 2006. Colonization processes in semiarid Mediterranean old-fields. J. Arid Environ. 65 (4), 591–603.
35. Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D.K., Yoder, D. C., 1995. Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). US Department of Agirculture, Agriculture Handbook No.703. Pending.
36. Reynolds, W. D., Elrick, D. E., 1985. In-situ measurement of field-saturated hydraulic conductivity sorptivity and parameter using the Guelph permeameter. Soil Sci. 140(4): 292-302.
37. Reynolds, W. D., Elrick, D. E., 1987. A laboratory and numerical assessment of the Guelph permeameter method. Soil Sci. 144(3): 282-299.
38. Reynolds, W. D., Elrick, D. E., Clothier, B. E., 1985. The constant head well permeameter: Effect of unsaturated flow. Soil Sci. 139(2): 172-180.
39. Richard, L. A., 1931. Capillary conduction of liquids thtough porous medium. Physics, 318-333.
40. Sharma, P. K., De Datta, S. K., 1985. Effects of Puddling on Soil Physical Properties and Processes. Soil Physics and Rice, pp. 217-234, IRRI, Philippines.
41. Tabuchi T., 1968. Studies on drainage in clayey paddy fields: A method of calculation of drainage and its fluctuations due to the precipitation. Transactions of the Japanese Society of Irrigation Drainage and Reclamation Engineers 25, pp50-56 (Japanese with English summary).
42. Takagi S., 1960. Analysis of the vertical downward flow of water through a two-layered soil, Soil Sci, 90, pp98-103.
43. Tsubo M., Fukai S., Tuong T. P., Ouk M., 2007. A water balance model for rainfed lowland rice fields emphasising lateral water movement within a toposequence, Ecol. Mod. 204, pp503-515.
44. Tuller, M., D., Dudley, L. M., 1999. Adsorption and capillary condensation in porous media: Liquid retention and interfacial configurations in angular pores, Water Resour. Res., 35(7), 1949-1964.
45. Tuong, T. P., Wopereis, M.C.S., Marquez, J. A., Kropff, M. J., 1994. Mechanisms and Control of Percolation Losses in Irrigated Puddled Rice Fields. Soil Science Society of America Journal-SSSAJ, Vol. 58, No. 6, pp. 1794-1803.
46. Walker S. H., Rushton K. R., 1984. Verification of lateral percolation losses from irrigated rice fields by a numerical model. J. Hydrol, 71, pp335-351.
47. Walker S. H., Rushton K. R., 1986. Water losses through the bunds of irrigated rice fields interpreted through an analogue model. Agricultural Water Manage, 11, 1986, pp59-73.
48. Wang, Y., Yu, P., Xiong, W., Shen, Z., Guo, M., Shi, Z., Du, A., Wang, L., 2008. Water-yield reduction after afforestation and related processes in the semiarid Liupan Mountains, Northwest China1. J. Am. Water Res. Assoc. 44 (5), 1086–1097.
49. West, L. T., Abreu, M. A., Bishop, J. P., 2008. Saturated hydraulic conductivity of soils in the Southern Piedmont of Georgia, USA: Field evaluation and relation to horizon and landscape properties. Catena, 3:174-179
50. Wickham, T. H., Singh, V. P., 1978. Water movement through wet soils. In: Soils and Rice. International Rice Research Institute, Los Banos, Philippines, pp 337-357.
51. Wischmeier, W. H., Smith, D. D., 1978. Predicting Rainfall Erosion Losses: A Guide to Conservation Department of Agricultural, Agric. Handbook No.537, USDA, Washington, D.C. 58PP.
52. Wischmeier, W. H., Smith, D. D., Uhland, R. E., 1958. Evaluation of Factor in the Soil Loss Equation. Agriculture Engineering, 39:458-462,474.
53. Wopereis, M. C. S., Bouman, B. A. M., Kropff, M. J., Tenberge H. F. M. and Maligaya, A. R., 1994. Water Use Efficiency of Flooded Rice Fields I. Validation of the Soil-Water Balance Model SAWAH,” Agricultural Water Management, Vol. 26, pp. 277-289.
54. Wu, F.C., Shen, H. W., Chou, Y. J., 2001. Variation of roughness coefficients for unsubmerged and submerged vegetation – Closure. Journal of Hydraulic Engineering, ASCE, 127(3):241-245.
55. Yang, D., Kanae, S., Oki, T., Koike, T., Musiake, K., 2003. Global potential soil erosion with reference to land use and climate changes. Hydrol Process 17 (14): 2913–2928.
56. Yoshikawa, S., Yamamota, H., Hanano, Y., Ishihara, A., 2004. Review hilly-land soil loss equation (HSLE) for evaluation of soil erosion caused by the abandonment of agricultural practices. Jpn Agric Res Q 38(1):21–29
57. Zhang, K., Cheng, X., Dang, H., Ye, C., Zhang, Y., Zhang, Q., 2013. Linking litter production, quality and decomposition to vegetation succession following agricultural abandonment. Soil Biol. Biochem. 57, 803–813.
58. Zhang, X., Cao, W., Guo, Q., Wu, S., 2010. Effects of landuse change on surface runoff and sediment yield at different watershed scales on the Loess Plateau. Int. J. Sed. Res. 25 (3), 283–293.
59. Zheng, F. L., 2006. Effect of vegetation changes on soil erosion on the Loess Plateau. Pedosphere 16 (4), 420–427.
60. Zhou, Z., Shangguan, Z., Zhao, D., 2006. Modeling vegetation coverage and soil erosion in the Loess Plateau Area of China. Ecol. Model. 198 (1), 263–268.
61. 丁澈士、廖秋榮、林龍海,1997,農業灌溉用水對地下水補注影響之調查評估(I):水稻灌溉部份研究,財團法人曹公農業水利研究發展基金會。
62. 木村和弘,1993,山間急傾斜地水田之荒廢化與全村圃場整備計畫,日本農業土木學會誌,Vol.61(5),pp.7-12(日文)。
63. 木村和弘,1998,山間急傾斜地之高性能水田的整備,日本農業土木學會誌, Vol.66(10),pp.14-20(日文)。
64. 木村和弘,2000,梯田的保全與整備方式,日本農業土木學會誌,Vol.68(8), pp.57-62(日文)。
65. 中華民國統計資訊網,新北市貢寮區區政統計年報,2014
66. 永石義隆,1988,農家にできる暗渠排水,農文協,pp76~78(日文)。
67. 早瀨吉雄,1997,中山間地水田域之洪水防止機能評價,日本農業土木學會。
68. 行政院農業委員會水土保持局,2000,水土保持技術規範。
69. 行政院農業委員會水土保持局、中華水土保持學會,2005,水土保持手冊。
70. 吳瑞賢,張嘉軒,1996,水田對逕流系統之影響評估,中國農業工程學報第42卷,第4期,55~66頁。
71. 吳嘉俊,2010,從山坡地開發談土壤流失量估算之水土保持因子選取,水保技術5(3):184-188
72. 吳嘉俊、王建涵、詹于婷,2012,礫石地之土壤水分入滲特性研究,中華水土保持學報,43(1):65-74。
73. 吳嘉俊、林俐玲、盧光輝,1996,土壤流失量估算手冊。
74. 吳嘉俊、黃俊德、徐森雄,1993,陡坡地坡地坡長利用上限之研究,82年度水土保持及集水區經營研究計畫成果彙編,林業特刊46:30-42。
75. 李光中,2011,台灣自然地景保育景點登錄標準芻議,地景保育通訊,32: 2-10。
76. 李光中,2011,鄉村地景保育的新思維-里山倡議,台灣林業期刊,37(3): 59-64。
77. 李建堂,1997,土壤沖蝕的量測方法,國立台灣大學地理學系地理學報,23:89-106。
78. 李雪轉、樊貴盛,2006,土壤有機質含量對土壤入滲能力及參數影響的試驗研究,農業工程學報,25(3):268-270。
79. 周乃昉、陳祉吟、巫孟璇、王宗南、張國平,2005,水田輪區在不同頻率降雨下之調洪能力,水稻田農業多樣性機能研討會,第159-170頁。
80. 林壯沛、盧惠生,1995,坡地栽植檳榔對水土流失之探討,行政院農業委員會林業試驗所-林業研究專訊,第2卷,第3期。
81. 林俐玲,1992,利用地理資訊系統技術建立山坡地之土壤沖蝕模式,80年度水土保持及集水區經營研究計畫成果彙編,pp.600~607,行政院農業委員會林業特刊第 42 號。
82. 林俐玲、林文英,2004,水田對防止土壤侵蝕與土沙崩塌功能量化之探討,水田灌溉多功能之判定研討會論文集:37-48。
83. 林俐玲、游韋菁、蔡義誌,2004,土壤中礫石含量對其飽和水力傳導度之影響,中華水土保持學報,36(2):157-168。
84. 林俐玲、蘇煒哲、蔡義誌,2008,不同土地利用下土壤飽和水力傳導度與粗
85. 孔隙之探討,水土保持學報40 (2):195 – 204
86. 牧山正男、山路永司, 2001,棚田って何だ,地域環境工学概論,農土誌
69(11),pp.31-36(日文)。
87. 徐玉標、吳銘塘,1968,土壤入滲率之測定,科學農業16(1-2)﹕57-62。
88. 張文亮,1993,由土壤水深層滲漏估計地面水對地下水的補助量,臺灣農業工程學會,82年度農業工程研討會論文集,67~70頁。
89. 張文亮,1994,雲林田洋地區土壤水分滲漏之估計,農業工程學報,第40
卷,第2期,44~48頁。
90. 張格綸,2007,應用蒸發皿係數推估地區蒸發散量之研究,國立成功大學資
源工程學系碩士論文。
91. 曹以松、林俊男,1987,集集共同引水計畫-人工補注技術及可行性實施計
畫,財團法人農業工程研究中心研究報告,pp52-99。
92. 陳世楷,2005,水稻梯田休耕轉作對水土保持之影響評估,行政院農業委員會推廣水田生態環境保護及灌溉營運管理制度改進計畫成果報告,pp14-1~pp14-20。
93. 陳世楷、徐輝明、陳以容、趙紹錚,2008,山坡地水稻梯田防止土壤沖蝕功
能量化之探討,台灣水利期刊56(1):85-97。
94. 陳尚、李德滋,1964,以土壤水分當量推算水稻灌溉需水量之研究,農工學
報第10卷,第4期,15~40頁。
95. 陳念軍,1970,滲透現象及其影響因子的探討,中華水土保持學報,3:18-23。
96. 陳明杰,1993,蓮華池地區不同林相土壤孔隙分布特性之研究,中華林學季
刊,24(4):63-77。
97. 陳慣楹,2014,水梯田入滲補注地下水之機制與量化研究-以貢寮地區為例,
國立台北科技大學碩士論文。
98. 黃俊德,1979,台灣降雨沖蝕指數之研究,中華水土保持學報 10(1):127-144。
99. 萬鑫森,1968,土壤水分及移動,水土保持學報,1(1),19-25。
100. 萬鑫森、黃俊義,1989,台灣坡地土壤沖蝕,中華水土保持學報,20(1):
pp.17-45.
101. 葉一隆、陳庭堅、王裕民,2000,地表裂縫對水分入滲影響,台灣水利Vol.
48 No.4 pp.64-69。
102. 農業工程研究中心、臺灣大學,1997,水稻田生態環境保護規劃及示範,農
委會成果報告。
103. 鄒褘、葉一隆、王裕民,1998,休耕水稻田蓄水對地下水涵養補注之影響-
以彰化田中休耕示範田為例,第九屆水利工程研討會論文集,pp173~179。
104. 劉家豪,2005,農地不飽和帶土壤水分移動特性之研究-以安康農場為例,
台灣大學森林環境暨資源學研究所碩士論文。
105. 劉振宇、施嘉昌、林俊男、張斐章、蘇明道、 鄭克聲,1996,水稻田生態
環境保護規劃及示範:水稻田對地下水補注注能評估分級,農業工程研究中
心研究報告。
106. 劉振宇、陳世楷、周曉雯,1999,雲林地區水田入滲量之評估,農業工程學
報,第45卷,第1期,38~54頁。
107. 劉振宇、陳世楷、黃偉哲,2000,水田開裂及田埂特性對入滲之探討,臺灣
水利第48卷,第2期,25~38頁。
108. 蔡明華、林永德,1994,水稻田生態環境保護對策之研究,農業工程研討會
論文集,第9~23頁。
109. 蔡欣妤,2008,以系統動力模型評估農業灌溉系統之研究,國立中央大學土
木工程研究所碩士論文。
110. 鄭俊澤,1996,超量灌溉對環境影響之研究,曹公農業水利研究發展基金會。
111. 盧昭堯、蘇志強、吳藝昀,2005,臺灣地區年等降雨沖蝕指數圖之修訂,中華水土保持學報,第三十六卷,第二期,第159~172頁。
112. 簡傳彬,2003,水稻田入滲及回歸水之試驗及模擬,國立中央大學土木工程
研究所博士論文。
113. 蘇郁婷,2013,利用滲透試驗探討雙層土壤之滲流沖蝕行為,國立臺灣大學
土木工程學研究所碩士論文。

論文全文使用權限:不同意授權