現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:金門海濱石蚵田人行道及樁系統之數值分析 [以論文名稱查詢館藏系統]
論文英文名稱:Numerical Analysis of Pedestrian Walkways of Stone-built Oyster Fields and Pile Foundation in Kinmen [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木工程系土木與防災碩士班(碩士在職專班)
畢業學年度:103
畢業學期:第二學期
中文姓名:林玠均
英文姓名:Chieh-Chun Lin
研究生學號:102428032
學位類別:碩士
口試日期:2015/07/23
指導教授中文名:陳水龍
口試委員中文名:何政道;陳卓然;李有豐
中文關鍵詞:海岸工程、有限元素法、樁基礎、棧道
英文關鍵詞:Coastal Engineering, Finite element Method, Pile Foundation, Pedestrian Walkways
論文中文摘要:本研究緣於金門縣海岸石蚵田觀光棧道興建案例之可行性與規劃。因海濱潮間帶的高腐蝕性與施工難度,且蚵田之生態環境特殊,蘊含豐富潮間帶生物外,又屬鱟之保育區。故將耐蝕、環保、高強度、低維護管理、可模組化施工的纖維強化高分子複合材料(Fiber Reinforced Plastic,FRP),引入地工的領域應用在濱海工程,希望成為在嚴苛環境下取代傳統材料的良好選擇。
本文提出二種可能的棧道方案,方案一使用FRP為棧道主材料,基樁以FRP外管內填混凝土,上部結構亦採用FRP的I型梁與平版;方案二,下部結構為預力混凝土基樁(Pretensioned Spun Concrete Piles)與預鑄混凝土帽梁,僅上部結構採用FRP材料。為兼顧安全性和經濟性,有必要瞭解浪潮拍打結構物的受力情形、基樁與土壤的互制行為。
本研究將基樁所受波力與海流力轉換為等值海浪外力,並依據現場鑽探調查與初步結構設計,採用有限元軟體Plaxis建立3D模型進行數值分析,並探討基樁受側向外力之行為,分析基樁的載重–位移、應力與彎矩等。期望研究成果可提供海岸類似工程規劃、設計之參考。
論文英文摘要:This study comes from the planning and feasibility of the tourism walkways next to the coastal oyster fields built with stones in Kinmen. The major considerations include the highly corrosive nature of tidal zone, construction difficulties, rich biology at the tidal zone and that the area is a preserve for horseshoe crabs. Therefore, the material and construction of FRP (Fiber Reinforced Plastic), featuring corrosion resistance, environmental friendliness, high strength, ease of maintenance and modular construction, is likely a viable substitute for traditional geotechnical materials and applications in harsh environmental conditions.
There are two possible cases of pedestrian walkways in this study. In case one uses FRP for main materials of structures. It’s composed of concrete-filled FRP piles (an outer FRP shell with unreinforced concrete infill), FRP girders and FRP decks. The structures of case two compose pretensioned spun concrete piles, precast reinforced concrete cap beams, FRP longitudinal beams and FRP decks. For both safety and economy, it is necessary to study the forces acting on the structures as the waves are pounding, the mechanical behaviors of pile foundation.
Finite element analysis will be conducted with models built with numerical analysis programs, Plaxis 3D 2013, based on the in-situ test result and the preliminary structural design. In Plaxis 3D models use equivalent forces to simulate loads induced by wave and current on the piles, and to investigate the mechanical behaviors of lateral loaded piles and analysis load-deflection behavior of piles and show stress and moment diagrams of piles. It is expected that the information provided in this paper will help researchers and engineers to develop composites piles in some similar coastal projects.
論文目次:中文摘要 i
英文摘要 ii
誌 謝 iv
目 錄 v
表目錄 viii
圖目錄 x
第一章緒論 1
1.1 研究背景與動機 1
1.2 研究目的與方法 3
1.3 研究內容與流程 3
第二章文獻回顧 5
2.1 FRP 複合樁之相關研究 5
2.1.1 複合樁之類型 5
2.1.2 FRP 複合樁之承載力 7
2.1.2.1 軸向承載力 7
2.1.2.2 側向承載力 9
2.1.3 FRP 與土壤界面 12
2.1.4 FRP 複合樁打樁相關研究 13
2.2 FRP 材料介紹 14
2.2.1 FRP 材料性質介紹 15
2.2.2 FRP 構件生產與製造 16
2.3 樁基礎承受側向力之分析 19
2.4 波浪相關研究及其誘發負載 27
第三章承載力與外力估算方法 30
3.1 軸向承載力 30
3.2 側向承載力 35
3.3 群樁效率 36
3.4 樁長的定義 39
3.5 承載力估算 39
3.6 波浪及水流誘發的負載 39
3.7 外力估算結果 50
第四章Plaxis 程式與有限元素分析方法 52
4.1 前言 52
4.2 有限元素分析方法 53
4.3 土壤模式 55
4.3.1 莫爾–庫倫模式 55
4.3.2 莫爾–庫倫模式輸入參數 58
4.3.3 Plaxis 土層材料排水與不排水之設置 59
4.4 模擬基樁之元素 63
4.4.1 3D 結構元素與輸入參數 63
4.5 界面元素 68
第五章案例介紹與數值模擬 70
5.1 案例概況 70
5.2 棧道設計方案與構件斷面尺寸 74
5.3 土層概況 77
5.4 模型所需參數輸入 79
5.4.1 土壤初始應力 79
5.4.2 土壤參數之決定 80
5.4.3 基樁承載考量 82
5.4.4 結構參數之決定 83
5.5 外力組合 86
5.6 模擬邊界 87
5.7 Plaxis 分析流程 89
第六章數值模型與分析結果 91
6.1 數值分析 91
6.2 綜合討論 115
第七章結論與建議 125
7.1 結論 125
7.2 建議 126
參考文獻 128
附 錄 132
A FRP 材料測試結果 133
B 潮波流調查資料(節錄) 134
論文參考文獻:1. E. Guades, T. Aravinthan, M. Islam and A. Manalo, "A review on the driving performance of FRP composite piles," Composite Structures, vol. 94, no. 6, 2012, pp. 1932-1942.
2. T. Sarpkaya, "Vortex shedding and resistance in harmonic flow about smooth and rough circular cylinders," Proc.Int.Conf.Boss, 1976.
3. B. McClelland, "Design of Deep Penetration Piles for Ocean Structures," Journal of the Geotechnical Engineering Division, vol. 100, no. GT7, 1974, pp. 709-747.
4. J. A. Focht and V. N. Vijayvergiya, "A New Way to Predict Capacity of Piles in Clay," Paper presented at the Offshore Technology Conference, Houston, Texas, 1972.
5. S. Timoshenko, "Strength of Materials," Huntington, New York: Krieger Co., 1956.
6. M. F. Randolph, "The Response of Flexible Piles to Lateral Loading," Geotechnique, vol. 31, no. 2, 1981, pp. 247-259.
7. H. A. Shaia, Behaviour of Fibre Reinforced Polymer Composite Piles: Experimental and Numerical Study, Ph.D. Thesis, University of Manchester, U. K., 2013.
8. DNV, "Recommended Practice DNV-RP-C205", 2010.
9. R. Krishnan, G. Gazetas and A. Velez, "Static and Dynamic Lateral Deflexion of Piles in Nonhomogeneous Soil Stratum," Geotechnique, vol. 33, no. 3, 1983, pp. 307-325.
10. J. A. Paduana and W. S. Yee, "Lateral Load Test on Piles in Bridge Embankments," Transportation Research Board, 1974, pp. pp 77-92.
11. M. A. Pando, C. D. Ealy, G. M. Filz, J. J. Lesko and E. J. Hoppe, ''A Laboratory and Field Study of Composite Piles for Bridge Substructures '' (FHWA-HRT-04-043), Virginia Transportation Research Council, 2006.
12. A. Fam, M. Pando, G. Filz and S. Rizkalla, "Precast Piles for Route 40 Bridge in Virginia Using Concrete Filled FRP Tubes," PCI journal, 2003.
13. J. D. Fenton and W. D. McKee, "On calculating the lengths of water waves," Coastal Engineering, vol. 14, no. 6, 1990, pp. 499-513.
14. PLAXIS, PLAXIS 3D Manuals, 2013.
15. PLAXIS, "Material Models Manual," PLAXIS 3D Manuals, 2013.
16. M. Hetenyi, Beams on Elastic Foundation,the University of Michigan Press, Ann Arbor, Michigan, 1946.
17. R. F. Scott, "Foundation Analysis," Englewood Cliffs, N. J.: Prentice-Hall, Inc., 1981.
18. J. Jaky, "The Coefficient of Earth Pressure at Rest," Journal of the society of Hungarian Architects and Engineers, vol. 78, no. 22, 1944, pp. 355-358.
19. J. Han, J. D. Frost and V. L. Brown, "Design of Fiber-Reinforced Polymer Composite Piles Under Vertical and Lateral Loads," Paper presented at the Transportation Research Record, 2003, pp. 71-80.
20. B. T. Kim, N.-K. Kim, W. J. Lee and Y. S. Kim, "Experimental Load–Transfer Curves of Laterally Loaded Piles in Nak-Dong River Sand," Journal of Geotechnical and Geoenvironmental Engineering, vol. 130, no. 4, 2004, pp. 416-425.
21. A. R. 2A-WSD, "Recommended Practice for Planning, Designing and Constructing Fixed Offshore PlatformPlatforms—Working Stress Design", 2000.
22. L. HAMILL, Bridges Hydraulics, London and New York: E & F Spon, 1999.
23. H. G. Poulos, "Behavior of Laterally Loaded Piles : I-Single Piles," Journal of Soil Mechanics and Foundations Division, vol. 97, no. 5, 1971, pp. 711-731.
24. J. M. Murchison and M. W. O'Neill, "Evaluation of P-Y Relationships in Cohesionless Soils," Paper presented at the Analysis and Design of Pile Foundations, New York, ASCE, 1984, pp. 174-191.
25. B. B. Broms, "Lateral Resistance of Piles in Cohesionless Soils," Journal of the Soil Mechanics and Foundations Division, vol. 90, no. 3, 1964, pp. 123-158.
26. M. T. Davisson, "Lateral Load Capacity Piles," National Academy of Science, no. 333, 1970, pp. 104-112
27. B. W. Melville, "Scour at bridge sites," CompanyCivil Enginering Practice (eds N.P.Cheremisinoff and S.L. Cheng P.N.Cheremisinoff, ed.), USA: Technomic Publishing, 1988.
28. M. D. Braja, Principles of Foundation Engineering, 6th, 2007.
29. A. Associates, ''Plans of Action for Scour Critical Bridges'', Idaho Transportation Department, Fort Collins, Colorado, 2004.
30. 李卉婷,「棧道壞2年沒人理 屏縣府挨批」,蘋果日報,2015(04月17日)。
31. 謝月琴,「朝陽步道觀景木棧道坍塌 8人受傷送醫」,大紀元新聞,2014(5月15日)。取自http://www.epochtimes.com/b5/14/5/15/n4156524.htm
32. 陳文霖,「高樹金鐘湖木棧道 部分毀損無錢可修」,客家電視,2012(01月04日)。取自http://web.pts.org.tw/hakka/news/detail.php?id=79910
33. 李曜宇,「美麗愛河之心 危險木棧道散步要留意」,大紀元, 2010(07月12日)。取自http://www.epochtimes.com/b5/10/7/12/n2964348.htm
34. 田德財、吳昱玞,「花四億規劃興建木棧道毀損陽光電城醜態畢露」,更生日報,2014(07月04日)。
35. 交通部,公路橋梁設計規範,2009。
36. 國立中山大學,金門海岸基本資料監測調查(1/2),臺東:經濟部水利署第八河川局,2014。
37. 國立臺北科技大學零碳建築研究中心,「纖維強化高分子複合材料(Fiber Reinforced Plastic, FRP)應用於國家公園人行棧道可性評估」, 內政部營建署,2012。
38. 翁慶隆,「FRP複合材料介紹與製程技術」(簡報),新式材料工法在水庫蓄水範圍及其上游主流河道治理工程之運用研究 研討會, 經濟部水利署北區資源局 主辦,臺北,2014 (11月10日)。
39. 王訓濤、周南山,承受側向力之基樁與土壤之互制作用,載於叢書之九:樁基工程,第增訂一版,胡邵敏(主編),臺北市:地工技術基金會,2009,第 253-268頁。
40. 李德沛,砂土中基樁側向位移之改良研究,碩士論文,國立中央大學土木工程研究所,桃園,2001。
41. 林郁庭,以離心模型模擬離岸風機單樁受反覆水平側推之p-y曲線,碩士論文,國立中央大學土木工程學系,桃園,2013。
42. 郭一羽(主編),海岸工程學,新竹市:文山書局,2003。
43. 陳信宏、楊瑞源、黃煌煇與尤上林,「金門跨海大橋橋墩地形沖刷與保護工安定研究」,港灣報導,第92期,2012,第1-9頁。
44. 金偉良,波浪荷載,載於工程荷載組合理論與應用,北京市:機械工業,2006,第336-379頁。
45. 謝榮華,波浪作用下垂直與水平柱體受力行為及減力設施之實驗研究,碩士論文,國立中山大學海洋環境及工程學系,高雄,2001。
46. 高家俊與鄒嘩明,「垂直柱體在波浪中所受之側向力」,第八屆海洋工程研討會,1985,第151-172頁。
47. 吳俊寬,離岸風機海底基樁設計之研究,碩士論文,國立臺灣大學工程科學及海洋工程學系,2011。
48. 謝蕙霙,以三向度數值分析模擬地盤改良與開挖變形之關係,碩士論文,國立臺北科技大學土木與防災研究所,臺北,2014。
49. 施國欽,大地工程學(二)-基礎工程篇(第5版),2010。
50. 洪廷瑋,地中壁支撐連續壁之效能分析,碩士論文,國立臺北科技大學土木與防災研究所,臺北,2009。
51. 東泰工程,「金門縣金寧鄉古寧頭海域潮間帶鑽探工作之地基調查報告書」,2014。
52. 大地工程學會,樁基礎篇,載於建築物基礎構造設計規範,2001。
53. 吳坤忠,「p-y曲線法」,地工技術,第46期,1994,第 105-106頁。
54. 曾志煌、翁國和、徐順憲、李賢華、陳素惠與蕭清木等人,港灣構造物設計基準修訂(上、下冊),臺北市:交通部運研所,2005。
55. 國立中山大學,金門海岸基本資料監測調查計畫,臺東市:經濟部水利署第八河川局,2011。
論文全文使用權限:同意授權於2020-08-27起公開