現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:以計算流體動力學CFD進行橋梁風致結構反應之分析與驗證 [以論文名稱查詢館藏系統]
論文英文名稱:Analysis and Investigation on Wind-Induced Structural Response of Bridges by Computational Fluid Dynamics [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:103
畢業學期:第二學期
中文姓名:莊耘
英文姓名:Yun Chuang
研究生學號:102428002
學位類別:碩士
語文別:中文
口試日期:2015/07/01
指導教授中文名:宋裕祺
指導教授英文名:Yu-Chi Sung
口試委員中文名:鄭啟明;蔡益超;張荻薇
中文關鍵詞:風靜力三分力係數顫振導數臨界風速
英文關鍵詞:Dimensionless Coefficients of Wind ForceFlutter DerivativeCritical Wind Speed
論文中文摘要:Fluent為目前計算流體力學(Computational Fluid Dynamics, CFD)中相當成熟的一套軟體,本文使用Fluent與自行撰寫的後處理程式,進行橋梁風致振動的研究。首先以美國塔科馬吊橋受風產生不穩定破壞的真實案例,進行模擬與分析,環繞橋梁斷面風場特性與橋梁受風所產生輕微至大幅振動過程皆以數值分析成果予以展現。其次,本文分析蘇通大橋與高屏溪斜張橋斷面,遭受不同風攻角之風力作用下所對應之升力、阻力與扭矩等三分力無因次化係數變化特性,並與風洞試驗結果進行比較。最後,本文針對理想平板與高屏溪斜張橋之顫振導數進行分析,求取橋體振動所引發之氣動力阻尼與結構之阻尼相互抵消引致結構產生發散現象時所對應的臨界風速。本文所得結果顯示CFD若使用得當,確實可有效分析橋梁風致振動,可供為風洞試驗的前置分析與橋梁耐風設計之用。
論文英文摘要:As being a stable analysis tool of computational fluid dynamics (CFD), the software Fluent associated with the developed program as postprocessor was used in this thesis to study wind-induced structural response of the bridges. Firstly, the famous aero-instability of Tacoma Narrow Bridge, USA was served as case study. The characteristic of wind field surrounding bridge section and the moderate-to-serve vibration of bridge deck before collapse are able to be analyzed and displayed. Secondly, the dimensionless coefficients of drag force, lift force and torsion at bridge deck due to different wind attack angle for two cable-stayed bridges of Sutong, China and Kao-Ping Hsi, Taiwan, respectively, were studied and discussed with results of wind tunnel test. Furthermore, analysis of flutter derivative for ideal plate and Kao-Ping Hsi Bridge, Taiwan were carried out and investigated by theoretical illustration and experimental result of wind tunnel test, respectively. The critical wind speed causing structural divergence is able to be determined. The results obtained shows a proper use of CFD could give a good simulation on wind-induced structural response of bridges and serve as prediction before wind tunnel test, benefiting wind resistance design of bridges.
論文目次:摘 要 i
ABSTRACT iii
誌 謝 v
目 錄 vii
表目錄 xi
圖目錄 xiii
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究內容與方法 2
1.3 章節概述 2
第二章 文獻回顧 5
2.1 前言 5
2.2 橋梁風工程之應用 6
2.3 近年來橋梁風洞實驗之案例 7
2.4 近年來數值模擬於橋梁耐風分析之實際案例 11
2.5 小結 16
第三章 橋梁斷面之空氣力學特性 17
3.1 前言 17
3.2 空氣動力學計算 18
3.2.1 風荷載之三分力介紹 18
3.2.2 風靜力三分力係數 20
3.3 空氣彈力學計算 23
3.3.1 理想平板顫振導數理論 23
3.3.2 斷面模型顫振導數識別方法 28
3.4 小結 31
第四章 分析程式介紹 33
4.1 前言 33
4.2 FLUENT 14.5 概述 33
4.2.1 前處理器 34
4.2.2 求解器 36
4.2.3 後處理器 37
4.3 STANDARD K-EPSILON模型介紹 38
4.4 UDF檔介紹 39
4.4.1 UDF概述 40
4.4.2 動態網格之相關DEFINE指令 41
4.5 小結 45
第五章 塔科馬懸吊橋破壞現象模擬 47
5.1 前言 47
5.2 破壞模擬 48
5.2.1 模型建立 49
5.2.2 網格生成 50
5.2.3 主程式設定流程 52
5.2.4 分析結果與討論 58
5.3 小結 63
第六章 風靜力三分力係數分析 65
6.1 前言 65
6.2 蘇通大橋三分力係數分析 65
6.2.1 模型建立 65
6.2.2 網格生成 69
6.2.3 主程式設定流程 70
6.2.4 分析結果與討論 74
6.3 高屏溪斜張橋三分力係數分析 82
6.3.1 模型建立 82
6.3.2 網格生成 86
6.3.3 主程式設定流程 88
6.3.4 分析結果與討論 92
6.4 小結 100
第七章 顫振導數與穩定性分析 103
7.1 前言 103
7.2 理想平板顫振導數分析 103
7.2.1 模型建立 103
7.2.2 網格生成 105
7.2.3 主程式設定流程 106
7.2.4 分析結果與討論 109
7.3 高屏溪斜張橋顫振導數分析 112
7.3.1 模型建立 113
7.3.2 網格生成 114
7.3.3 主程式設定流程 115
7.3.4 分析結果與討論 117
7.4 高屏溪斜張橋穩定性分析 121
7.4.1 模型建立 122
7.4.2 網格生成 122
7.4.3 主程式設定流程 124
7.4.4 分析結果與討論 128
7.5 小結 131
第八章 結論與建議 133
8.1 結論 133
8.2 建議 134
參考文獻 137
論文參考文獻:[1]陳政清,「橋梁風工程」,北京:人民交通出版社,2005,第55-98頁。
[2]藍倉連,「斷面寬身比對長跨徑橋梁顫振與抖振之影響」,碩士學位論文,淡江大學,臺北,台灣,2001年7月。
[3]Arindam, G., C., Partha, P. S., "A new technique for identification of eighteen flutter derivatives using a three-degree-of-freedom section model", Engineering Structures, Iowa State University, Department of Aerospace Engineering, 2003.
[4]何明錦、葉祥海、鄭啟明、林堉溢、吳重成、陳若華、陳振華,「風洞實驗技術於土木建築結構之應用與驗證計畫(高屏溪斜張橋-全橋模型實驗)」,期末簡報,淡江大學,臺北,台灣,2005年11月。
[5]Raulina, B. P., Luca, C., "Extraction of flutter derivatives from small-scale wind tunnel experiments", 11th Americas Conference on Wind Engineering, USA, 2009.
[6]瞿偉廉、劉琳娜,「基於CFD的橋梁三分力係數是別的數值研究」,武漢理工大學學報,第29卷,第7期,2007。
[7]Szabó, G., Györgyi, J., "Fluid-structure interaction analysis with the ANSYS software in bridge aeroelasticity", Florence, Italy, July 19-23, 2009.
[8]Starossek, U., Aslan, H. and Thiesemann, L., "Experimental and numerical identification of flutter derivatives for nine bridge deck sections", Ph.D. Thesis, Hamburg University of Technology, Hamburg, Germany.
[9]霍智超,「深圳南山大橋抗風顫振特性數值模擬研究」,碩士學位論文,哈爾濱工程大學,黑龍江省哈爾濱市,中國,2011。
[10] 洪光,「基於Fluent軟件採用自由振動法識別大跨度橋梁的顫振導數」,碩士學位論文,長安大學,陜西省西安市,中國,2012。
[11]小西一郎編、張健峰譯、陳英俊校,「鋼橋」,北京:中國鐵道出版社,1982,第十分冊。
[12]許福友、陳艾榮,「蘇通大橋三維顫振分析」,工程力學,第25卷,第8期,2008。
[13]中華顧問工程司,「高屏溪橋(主橋)風洞實驗報告」,第二高速公路後續計畫燕巢九如段,臺北,1992。
[14]鄭啟明,「以風洞實驗評估大跨度懸索支撐橋梁的氣動力穩定性及耐風設計」,大跨徑橋梁規設施工與環境整合研討會,台北,2015年4月,第42-62頁。
[15]丁欣碩、焦楠,「Fluent 14.5流體仿真計算從入門到精通」,北京:清華大學出版社,2014,第23-187頁。
[16]葛耀君、項海帆,「大跨度橋梁氣動穩定性數值計算模型與方法」,土木工程學報,第41卷,第2期,2008。
[17]祝志文、陳政清、陳傳芳,「用動網格法計算理想平板的顫振導數」,國防科技大學學報,第24卷,第3期,2002。
[18]歐志峰,「基於ADINA的橋梁氣動導數數值模擬」,碩士學位論文,西南交通大學,四川省成都市,中國,2007。
[19]李桂林,「扁平箱梁斷面顫振導數的數值分析」,碩士學位論文,中南大學,湖南省長沙市,中國,2009。
[20]白桦、夏勇、劉健新、李加武,「流線型橋梁斷面顫振穩定性數值模擬」,長安大學學報,第31卷,第3期,2011。
[21]Janesupasaeree, T., Boonyapinyo, V., "Identification of flutter derivatives of bridge decks in wind tunnel test by stochastic subspace identification", Ph.D. Thesis, Thammasat University, Thailand, 2009.
[22]Gergely, S., "Bridge aeroelasticity simulation by using ANSYS software", Pont Terv Ltd., Budapest, Hungary.
[23]Hua, X. G., Chen, Z. Q., Ni, Y. Q., and Ko, J. M., "Flutter analysis of long-span bridges using ANSYS", Wind and Structures, Vol. 10, No. 1, 2007, pp. 61-82.
[24]鄭啟明,「橋梁風工程」,中華民國風工程學會電子報,第二期,2012年5月。
[25]徐浩然,「矩形斷面削角後對橋梁氣動力參數的影響」,碩士學位論文,淡江大學,臺北,台灣,2007年6月。
[26]李宜泓,「施工橋梁斷面模型風洞實驗」,碩士學位論文,淡江大學,臺北,台灣,2011年6月。
[27]翁明熙,「斜風向之斷面模型風洞實驗」,碩士學位論文,淡江大學,臺北,台灣,2012年6月。
[28]蔡爵宇,「長跨徑施工中之斜張橋受斜風作用下之氣動力反應」,碩士學位論文,淡江大學,臺北,台灣,2013年1月。
[29]ANSYS, "ANSYS fluent UDF manual", Canonsburg:ANSYS, Inc., 2011, pp. 15-191.
[30]Timothy, A. R., Herry, W. T., Francis, J. M., "Effects of turbulence on bridge model torsion stability", Journal of the Structure Division, ASCE, Vol.102, No.ST5, Proc. Paper 12118, May, 1976, pp. 1003-1013.
[31]Sarkar, P. P., Jones, N. P., Scanlan, R. H., "System dentification for estimation of flutter derivatives. J. Wind Eng. Ind. Aerodyn.", 1992, pp. 1243-1254.
[32]Hoshiya, H., Saitoh, E., "Structural identification by extended Kalman filter", J. Eng. MECH, ASCE, 1984, pp. 1757-1779.
[33]Scanlan, R. H., Lin, W. H., "Effects of turbulence on bridge flutter derivatives", Journal of Engineering Mechanics Division, ASCE, Vol. 104, No. EM4, Proc. Paper 13989, August, 1978, pp. 719-733.
[34]Huston, D. R., Bosch, H. R., and Scanlan, R. H., "The effect of fairing and of turbulence on the flutter derivatives of a notably unstable bridge deck, journal of wind engineering and industrial aerodynamics", No.29, 1988, pp. 339-349.
[35]Scanlan, R. H. and Tomko, J. J., "Airfoil and bridge deck flutter derivatives", Journal of Wind Eng.Mech.Div., Vol. 97, 1971, pp. 1717-1737.
[36]Simiu, E., Scanlan, R. H., "Wind effects on structures", 3rd Ed., New York:Wiley Press, 1996, pp. 250-253.
[37]Bienkiewicz, B., "Wind-tunnel study of effects of geometry modification on aerodynamics of a cable-stayed bridge deck" Journal of Wind Eng. and Industrial Aerodynamics, Vol. 26, 1987, pp. 325-339.
[38]Ukeguchi, N., Sakata, H., Nishitani, H., "An investigation of aeroelastic instability of suspension briges", In:Proc. Of Int. Symp. on Suspension Bridges, Lisbon, 1966, pp. 273-284.
[39]Miyata, T., Yamada, H., "Coupled flutter estimate of suspension bridge", J. Wind Eng. Ind. Aerodyn., 1990, pp. 341-348.
[40]Jones, N. P., Scanlan, R. H., Sarkar, P. P., Singh, L., "The effect of section model details on aeroelastic parameters.", J. Wind Eng. Ind. Aerodyn., 1995, pp. 54-55.
[41]Matsumoto, M., Yoshizumi, F., Yabutani, T., Abe, K., and Nakajima, N., "Flutter stabilization and heaving-branch flutter", Journal of Wind Eng. and Industrial Aerodynamics, Vol.83, 1999, pp. 289-299.
[42]Li, Q. C., "Measuring flutter derivatives for bridge sectional models in water channel", Delhi, India, 1995, pp. 972-978.
[43]Allan, L., Jens, H. W., "Discrete vortex simulation of flow around five generic dridge deck section", Journal of Wind Eng.and Industrial Aerodynamics, Vol. 77&78, 1998, pp. 591-602.
[44]Sarkar, P. P., Jones, N. P. Scanlan, R. H., "System dentification for estimation of flutter derivatives", J. Wind Eng. Ind. Aerodyn., 1992, pp. 1243-1254.
[45]Yong, J. U., Kwon, S. D., "Sequenrial numerical procedures for predicting flutter velocity of bridge section", Journal of Wind Eng. and Industrial Aerodynamics, Vol. 91, 2003, pp. 291-305.
[46]Iwamoto, M., Fujino, Y., "Identification of flutter derivatives of bridges deck fromfree vration data", J. Wind. Emg. Ind Aerodyn., 1995, pp. 54-55, 55-63.
[47]Yamada, H., Miyata, T., Ichikawa H., "Measurement of aerodynamic coefficients by system identification", J. Wind Eng. Ind. Aerodyn., 1990, pp. 341-348.
[48]Nagao, F., Utsunomiya, H., Oryu, T. and Manabe, S., "Aerodynamic efficiency of triangular fairing on box girder bridge", Journal of Wind Eng. and Industrial Aerodynamics, Vol. 49, 1993, pp. 565-574.
[49]Morishima, H., Inoue, H., "The unsteady aerodynamic force measurement system with forced oscillation of large amplitute", J. Wind Engineering Japan, 1999, pp. 95-97.
[50]Obasaju, E. D., Ermshaus, R. and Naudasher, E., "Vortex induced streamwis oscillations of square-section cylinder in a uniform stream", Journal of Fluid Mech., Vol. 213, 1989, pp. 171-189.
[51]Nakamura, Y. and Ohya, Y., "The effect of turbulence on the mean flow past square rod", Journal of Fluid Mesh., Vol. 149, 1984, pp. 255-273.
[52]Professor of Engineering University of Cambridge, "Random vibration spectral and wavelet analysis", 3rd Edition, D. E. Newland.
[53]Shijo, R., Taniwaki, Y., Masaru, M., "Frequency characteristics in various flutter instabilities of briders", Journal of Wind Eng. and Industrial Aerodynamics, Vol.90, 2002, pp. 1973-1980.
[54]Masumoto, M., "Aerodynamic damping of prisms", Journal of Wind Eng. and Industrial Aerodynamics, Vol.59, 1996, pp. 159-175.
[55]Tanaka, H., "Similitude and modelling in wind tunnel test of bridges", Journal of Wind Eng. and Industrial Aerodynamics, Vol. 7, 1981, pp. 361-366.
論文全文使用權限:同意授權於2018-08-17起公開