現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:高溫管線隔熱補強新工法可行性之研究 [以論文名稱查詢館藏系統]
論文英文名稱:A Feasibility Study on New Repair Methods for High Temperature Pipeline [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:103
畢業學期:第二學期
中文姓名:蔡宗翰
英文姓名:Tsung-Han Tsai
研究生學號:102428011
學位類別:碩士
語文別:中文
口試日期:2015/06/26
指導教授中文名:李有豐
指導教授英文名:Yeou-Fong Li
口試委員中文名:陳清泉;徐增興;黃中和
中文關鍵詞:碳纖維夾克、隔熱補強、固化劑、珍珠岩、蛭石
英文關鍵詞:CFRP Jacket, repair methods, Greencrete, Perlite, Vermiculite
論文中文摘要:由於國內石化廠之輸送管線多使用金屬管線,經長年使用大多有鏽蝕之情形產生,恐有強度上之疑慮。本研究提出新材料及工法應用於高溫管線補強隔熱之可行性研究。首先研究隔熱材料,採固化劑(Greencrete)分別添加珍珠岩及蛭石後,比較兩者抗壓強度及熱傳導係數因添加量不同產生之變化。由試驗之結果發現,固化劑添加蛭石之抗壓強度下降趨勢小於添加珍珠岩,¬¬¬固化劑添加蛭石之熱傳導係數下降趨勢小於添加珍珠岩,而添加珍珠岩有較好之隔熱效果與流動性,因此選用珍珠岩作為隔熱之材料。而後進行4種珍珠岩配比之碳纖維圍束試驗,經由試驗與理論解進行比較,發現理論可以準確預測本試驗材料之圍束後應力。新工法試作係分為灌注式工法及預鑄式工法,其中又細分為高溫下灌注及常溫下灌注。確立可行性後,進行不同厚度及材料配比之隔熱性能差異,並藉由試驗之方式整理出一套管線隔熱系統。
論文英文摘要:The pipelines of chemical factories mostly make use of metal pipelines, which might end up in a seriously corroded situation. In this thesis, new materials and repair methods were proposed to repair the high temperature pipelines. For insulation materials, perlite and vermiculite were added to Greencrete, the compressive strength and thermal conductivity of those compounds were studied. From the experimental results, it was found that the compressive strength and thermal conductivity reduction tendency of the test specimens with added vermiculite was less than for those with added perlite. After comparing the compressive strength, thermal conductivity, mobility and cost, perlite was chosen as CFRP confinement experiments and development of the new repair methods. Then four kinds of material ratio for the CFRP confinement experiments, after comparing the experimental results and theoretical solution based on theoretical model, it was discovered that the theory can accurately predict post-confinement stress of the test material. The new repair methods include cast-in-place and precast methods, which is also subdivided into casting under high temperature and under normal temperature. After having established the feasibility, experiment with different thickness and different material mixes to observe insulation performance, it is expected that an efficient pipeline insulation system can be achieved.
論文目次:摘要 i
ABSTRACT ii
目錄 iiv
表目錄 vii
圖目錄 iix
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 1
1.3 研究目的及內容 3
第二章 文獻回顧 5
2.1 隔熱材料相關研究 5
2.2 CFRP圍束相關研究 7
2.3 CFRP管線修補相關研究 10
2.4 管線防鏽隔熱補強系統專利 12
第三章 材料試驗規劃與結果 13
3.1 試驗材料 13
3.2 試驗設備與方法 16
3.2.1 試驗設備 16
3.2.2 試驗方法 17
3.3 材料配比試驗 20
3.3.1 材料3天齡期抗壓試驗 21
3.3.2 材料固體熱傳導試驗 25
3.3.3 較佳材料選用 29
3.4 材料CFRP圍束試驗 32
3.4.1 圓柱(IG、IGC)試體製作 34
3.4.2 無圍束圓柱(IG08)試體抗壓試驗 37
3.4.3 CFRP圍束圓柱試體(IGC08)抗壓試驗 39
3.4.4 無圍束圓柱(IG15)試體抗壓試驗 43
3.4.5 CFRP圍束圓柱(IGC15)試體抗壓試驗 45
3.4.6 無圍束圓柱(IG25)試體抗壓試驗 56
3.4.7 CFRP圍束圓柱(IGC25)試體抗壓試驗 58
3.5 試驗結果比較 62
第四章 金屬管線隔熱補強工法試驗 65
4.1 試驗材料 65
4.2 試驗設備與方法 67
4.2.1 試驗設備 67
4.2.2 試驗方法 68
4.3 試驗前置作業 70
4.3.1 碳纖維夾克製作 71
4.3.2 灌注式隔熱補強段組立 72
4.4 隔熱補強工法 73
4.4.1 常溫管線灌注式工法 73
4.4.2 高溫管線灌注式工法 75
4.4.3 高溫管線預鑄式工法 78
4.4.4 小結 80
4.5 高溫管線隔熱試驗 80
4.5.2 灌注式工法加熱試驗 81
4.5.1 預鑄式工法加熱試驗 82
4.5.3 不同材料配比加熱試驗 83
4.5.4 不同厚度加熱試驗 84
4.6 試驗結果比較 86
第五章 結論 90
5.1 結論 90
參考文獻 92
論文參考文獻:1. Abidi, S., Nait-Ali, B., Joliff, Y. and Favotto, C., “Impact of perlite, vermiculite and cement on the thermal conductivity of a plaster composite material: Experimental and numerical approaches,” Composites: Part B, Vol. 68, pp. 392-400 (2015).
2. Al-Salloum, Y. A., Elsanadedy, H. M. and Abadel, A. A., “Behavior of FRP-confined concrete after high temperature exposure,” Construction and Building Materials, Vol. 25, No. 2, pp. 838-850 (2011).
3. Collet, F. and Pretot, S. “Thermal conductivity of hemp concretes: Variation with formulation, density and water content,” Construction and Building Materials, Vol. 65, pp. 612-619 (2014).
4. da Costa Mattos, H. S., Reis, J. M. L., Paim, L. M., da Silva, M. L., Amorim, F. C. and Perrut, V. A., “Analysis of a glass fibre reinforced polyurethane composite repair system for corroded pipelines at elevated temperatures,” Composite Structures, Vol. 114, pp. 117-123 (2014).
5. Demirboga, R. and Kan, A. “Thermal conductivity and shrinkage properties of modified waste polystyrene aggregate concretes,” Construction and Building Materials, Vol. 35, pp. 730-734 (2012).
6. Idris, Y. and Ozbakkaloglu, T., “Flexural behavior of FRP-HSC-steel composite beams,” Thin-Walled Structures, Vol. 80, pp. 207-216 (2014).
7. Idris, Y. and Ozbakkaloglu, T., “Flexural behavior of FRP-HSC-steel double skin tubular beams under reversed-cyclic loading,” Thin-Walled Structures, Vol. 87, pp. 89-101 (2015).
8. Khan, M. I., “Factors affecting the thermal properties of concrete and applicability of its prediction models,” Building and Environment, Vol. 37, No. 6, pp. 607-614 (2002).
9. Kusumawardaningsih, Y. and Hadi, M. N. S., “Comparative behaviour of hollow columns confined with FRP composites,” Composite Structures, Vol. 93, No. 1, pp. 198-205 (2010).
10. Li, Y.-F., Lin, C.-T. and Sung, Y.-Y., “A constitutive model for concrete confined with carbon fiber reinforced plastics,” Mechanics of Materials, Vol. 35, No. 3-6, pp. 603-619 (2003).
11. Liu, M. Y. J., Alengaram, U. J., Jumaat, M. Z. and Mo, K. H., “Evaluation of thermal conductivity, mechanical and transport properties of lightweight aggregate foamed geo-polymer concrete,” Energy and Buildings, Vol. 72, pp. 238-245 (2014).
12. Micelli, F. and Modarelli, R., “Experimental and analytical study on properties affecting the behaviour of FRP-confined concrete,” Composites: Part B, Vol. 45, No. 1, pp. 1420-1431 (2013).
13. Ozbakkaloglu, T., “Compressive behavior of concrete-filled FRP tube columns: Assessment of critical column parameters,” Engineering Structures, Vol. 51, pp. 188-199 (2013).
14. Sengul, O., Azizi, S., Karaosmanoglu, F. and Tasdemir, M. A., “Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete,” Energy and Buildings, Vol. 43, No. 2-3, pp. 671-676 (2011).
15. Shamsuddoha, M., Islam, M. M., Aravinthan, T., Manalo, A. and Lau, K.-T., “Effectiveness of using fibre-reinforced polymer composites for underwater steel pipeline repairs,” Composite Structures, Vol. 100, pp. 40-54 (2013).
16. Teng, J. G., Yu, T., Wong, Y. L. and Dong, S. L., “Hybrid FRP-concrete-steel tubular columns: Concept and behavior,” Construction and Building Materials, Vol. 21, No. 4, pp. 846-854 (2007).
17. Topçu, I. B., Işıkdağ, B., “Manufacture of high heat conductivity resistant clay bricks containing perlite,” Building and Environment, Vol. 42, No. 10, pp. 3540-3546 (2007).
18. Wongkeo, W., Thongsanitgarn, P., Pimraksa, K. and Chaipanich, A., “Compressive strength, flexural strength and thermal conductivity of autoclaved concrete block made using bottom ash as cement replacement materials,” Materials and Design, Vol. 35, pp. 434-439 (2012).
19. Yesilata, B., Isiker, Y. and Turgut, P., “Thermal insulation enhancement in concretes by adding waste PET and rubber pieces,” Construction and Building Materials, Vol. 23, No. 5, pp. 1878-1882 (2009).
20. Yun, T. S., Jeong, Y. J., Han, T.-S. and Youm, K.-S., “Evaluation of thermal conductivity for thermally insulated concretes,” Energy and Buildings, Vol. 61, pp. 125-132 (2013).
21. O’Neil, P. V., Advanced Engineering Mathematics, Thomson Brooks/Cole, Pacific Grove (2003).
22. 李有豐,FRP複合材料於土木與建築工程之應用,台灣區複合材料工業同業公會,臺北,臺灣(2012)。
23. 潘國梁,工程地質通論,五南圖書出版公司,台北(2007)。
24. 李有豐,「金屬管線防鏽隔熱補強裝置」,中華民國專利,證書號數:M496080,104年2月21日。
25. http://www.cnsonline.com.tw/
26. http://www.cm168repair.com.tw/product03.html
27. http://www.thermotech.com.tw/pdf/cht/catalog.pdf
28. http://www.alltech1995.com.tw/index.php?page=news
29. http://www.arc.com.
論文全文使用權限:不同意授權