現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:背拉式FRP版樁牆之研究 [以論文名稱查詢館藏系統]
論文英文名稱:A Study of Anchored FRP Sheet Pile Wall [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:103
畢業學期:第二學期
中文姓名:曾郁翔
英文姓名:YU-HSIANG TSENG
研究生學號:102428013
學位類別:碩士
語文別:中文
口試日期:2015/06/26
指導教授中文名:李有豐
指導教授英文名:Yeou-Fong Li
口試委員中文名:陳清泉;徐增興;陳水龍
中文關鍵詞:FRP棒、土釘、續接試驗、握裹試驗、邊坡護岸
英文關鍵詞:FRP bar, Soil nail, Bond test, Slope revetment
論文中文摘要:本論文採用玻璃纖維強化高分子複合材料(Glass Fiber Reinforced Plastics, GFRP)應用於土釘版樁牆之邊坡護岸,其目的為克服現有金屬材料遇水易腐蝕且造成強度下降。惟因GFRP版樁剛性較低,使得版樁撓度過大,故搭配GFRP土釘提供側向拉力,提升整體版樁結構勁度。土釘採用GFRP空心螺紋棒,其螺紋表面可增加與固化劑之握裹力,並以握裹拉拔試驗測得固化劑與螺紋表面之握裹強度;而以GFRP較小實心圓桿和環氧樹脂嵌入空心螺紋棒中,達到GFRP土釘續接效果,亦進行續接拉拔試驗測得GFRP與環氧樹脂之黏結強度,並計算所需續接長度。續以有限元素軟體PLAXIS 2D分析土釘版樁於現地環境之可行性,包含土釘較佳化分析,以土釘打設長度、打設傾斜角與高度作為參數分析,並比較土體滑移之安全係數。最後以PLAXIS 3D分析現地結構,於邊坡轉角時之受力情形分析,轉角處之版樁受力呈現不均勻分布,故考慮版樁打設於轉角時之結構安全。由本研究成果可知,背拉式GFRP版樁牆可應用於惡劣腐蝕環境之邊坡護岸。
論文英文摘要:In this study, Glass Fiber Reinforced Plastics (GFRP) are used as anchored sheet pile for slope revetment in order to resist the corrosion and the resulting strength reduction that are associated with commonly used metallic materials. Due to the lower rigidity of GFRP piles, the observed deflection is generally large but the overall structural stiffness of the pile system can be provided with lateral GFRP soil nail. The threaded surface of hollow GFRP threaded soil nail rods can increase the bonding strength between the rod surface and the bonding material. Pull-out tests were performed to measure the bonding strength between the threaded surface and the bonding material. Then a smaller GFRP rod coated with epoxy was inserted in hollow threaded rod to achieve splicing, pull-out tests were also performed to measure the bonding strength between the threaded surface and epoxy, and the required overlapping length was determined. The feasibility of the implementation of the anchored sheet pile wall was assessed using the PLAXIS 2D finite element analysis software, including soil nail optimization analysis with the soil anchor length, height and angle as parameters, then the safety factor against soil slippage was evaluated. Finally, the PLAXIS 3D finite element analysis software was utilized to analyze the field structure, the loading conditions corresponding to different slope angles, the pile system uneven load distribution at the corners, before the safety factor when the soil anchor is set on the corners was evaluated. From the results of this study, we can show that the anchored GFRP sheet pile can be used in slope revetment.
論文目次:摘 要 I
ABSTRACT II
誌謝 IV
目 錄 V
圖目錄 VIII
表目錄 XIV
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 3
1.3 研究目的及內容 5
第二章 文獻回顧 7
2.1 土釘與版樁相關研究 7
2.2 土釘與版樁相關應用案例 20
第三章 試驗規劃 23
3.1 FRP材料特性與製程介紹 23
3.1.1 FRP材料特性介紹 23
3.1.2 FRP與傳統土木材料性質之比較 25
3.1.3 FRP製程與產品 26
3.2 GFRP棒(土釘)續接試驗研究方法 28
3.2.1 試體介紹 28
3.2.2 試體製作 30
3.2.3 實驗操作 32
3.3 GFRP棒(土釘)握裹試驗 33
3.3.1 GFRP棒特性 34
3.3.2 握裹漿體材料試驗 35
3.3.3 試體製作 40
第四章 試驗觀察與結果 43
4.1 GFRP棒(土釘)續接拉拔試驗 43
4.1.1 續接試驗E組 44
4.1.2 續接試驗CE組 46
4.1.3續接拉拔試驗小結 47
4.2 GFRP棒(土釘)錨碇握裹試驗 48
4.2.1 C50組握裹拉拔試驗 49
4.2.2 G60組握裹拉拔試驗 53
4.2.3 握裹拉拔試驗小結 55
第五章 GFRP版樁牆數值分析模擬 59
5.1現地環境地質介紹 59
5.2有限元素模擬分析 61
5.2.1 PLAXIS介紹 62
5.2.2 PLAXIS 2D&3D較佳化土釘分析 62
5.2.3 3D PLAXIS版樁打設角度分析 76
5.3 現地環境數值模擬分析 82
5.4 數值模擬分析小結 86
第六章 結論 88
參考文獻 89
論文參考文獻:1. Baena, M., Torres, L., Turon, A. and Barris, C. “Experimental study of bond behavior between concrete and FRP bars using a pull-out test,” Composites: Part B, Vol. 40, No. 8, pp. 784-797 (2009).
2. Behnam, B. and Eamon, C. “Reliability-based design optimization of concrete flexural members reinforced with ductile FRP bars,” Construction and Building, Vol. 47, pp. 942-950 (2013).
3. Bilgin, Ö. “Numerical studies of anchored sheet pile wall behavior constructed in cut and fill conditions,” Computers and Geotechnics, Vol. 37, No. 8, pp. 399-407 (2010).
4. Davalos, J. F., Chen, Y. and Ray, I. “Effect of FRP Bar Degradation on Interface Bond with High Strength Concrete,” Cement and Concrete Composites, Vol. 30, No. 8, pp. 722-730 (2008).
5. Fang, Z., Zhang, K., and Tu, B. “Experimental investigation of a bond-type anchorage system for multiple FRP tendons,” Engineering Structures, Vol. 57, pp. 364-373 (2013).
6. Fava, G., Carvelli, V. and Pisani, M. A. “Mechanical behavior modelling of a new anchor system for large diameter,” Composites: Part B, Vol. 43, No. 3, pp. 1397-1404 (2012).
7. Hao, Q., Wang, Y., He, Z. and Ou J. “Bond strength of glass fiber reinforced polymer ribbed rebars in normal strength concrete,” Construction and Building Materials, Vol. 23, No. 3, pp. 865-871 (2009).
8. Huang, M., Zhou, Z., Huang, Y. and Ou, J. “A distributed self-sensing FRP anchor rod with built-in optical fiber sensor,” Measurement, Vol. 46, No. 4, pp. 1363-1370 (2013).
9. Katz, A. and Berman, N. “Modeling the effect of high temperature on the bond of FRP reinforcing bars to concrete,” Cement and Concrete Composites, Vol. 22, No. 6, pp. 433-443 (2000).
10. Koca, M. Y., Kincal, C., Arslan, A. T. and Yilmaz, H. R. “Anchor application in Karatepe andesite rock slope, Izmir – Türkiye,” International Journal of Rock Mechanics & Mining Sciences, Vol. 48, No. 2, pp. 245-258 (2011).
11. Kocaoz, S., Samaranayake, V. A., and Nanni, A. “Tensile characterization of glass FRP bars,” Composites: Part B, Vol. 36, No. 8, pp. 127-134 (2005).
12. Krabbenhoft, K., Damkilde, L. and Krabbenhoft, Sven. “Ultimate limit state design of sheet pile walls by finite elements and nonlinear programming,” Computers and Structures, Vol. 83, No. 4-5, pp.383-393 (2005).
13. Ma, S., Nemcil, J., Aziz, N. “An analytical model of fully grouted rock bolts subjected to tensile load,” Construction and Building Materials, Vol. 49, pp. 519-526 (2013).
14. Martín, L.B., Tijani, M., Hadj-Hassen, F. and Noiret, A. “Assessment of the bolt-grout interface behaviour of fully grouted rockbolts from laboratory experiments under axial loads,” International Journal of Rock Mechanics & Mining Sciences, Vol. 63, pp. 50-61 (2013).
15. Ren, F. F., Yang, Z. J., Chen, J. F. and Chen, W. W. “An analytical analysis of the full-range behavior of grouted rockbolts based on a tri-linear bond-slip model,” Construction and Building Materials, Vol. 24, No. 3, pp. 361-370 (2010).
16. Schmidt, J. w., Bennitz, A., Täljsten, B., Goltermann, P., and Pedersen, H. “Mechanical anchorage of FRP tendons – A literature review” Construction and Building Materials, Vol. 32, pp. 110-121 (2012).
17. Wall, H. and Wadsö, L. “Corrosion rate measurements in steel pile walls in a marine environment,” Marine Structures, Vol. 33, pp. 21-32 (2013).
18. Wang, X., Xu, P., Wu, Z. and Shi, J. “A novel anchor method for multi-tendon FRP cable:Concept and FE study,” Composite Structures, Vol. 120, pp. 552-564 (2015).
19. Won, J.-P., Park, C.-G., Kim, H.-H., Lee, S.-W. and Jang, C.-I. “Effect of Fibers on the Bonds between FRP Reinforcing Bars and High-Strength Concrete,” Composites: Part B, Vol. 39, No. 5, pp. 747-755 (2008).
20. Zheng, J.-J. and Dai, J.-G. “Analytical solution for the full-range pull-out behavior of FRP ground anchors,” Construction and Building Materials, Vol. 58, pp. 129-137 (2014).
21. 王怡仁,懸臂式與錨碇式擋土版樁力學行為之探討,碩士論文,國立中興大學,台中(2012)。
22. 陳敬凱,FRP錨碇型版樁擋土牆之研究,碩士論文,國立台北科技大學土木與防災研究所,台北(2007)。
23. 蔡澤瀛,不同背拉型式地錨對倘土版樁力學行為之探討,碩士論文,國立中興大學,台中(2012)。
24. 羅國軒,纖維棒應用於梁構件力學行為與耐久性之研究,碩士論文,國立台北科技大學土木與防災研究所,台北(2007)。
25. 李有豐,FRP複合材料於土木與建築工程之應用,台灣區複合材料工業同業公會,台北(2012)。
26. 李有豐、徐增興、程如君,利用有限元素法分析碳纖維棒於混凝土中之握裹實驗,第十屆海峽兩岸破壞科學研討會,屏東(2010)。
27. 林至聰、李有豐、洪明中、羅國軒,FRP棒應用於土木工程之耐久性實驗與探討,第九屆結構工程研討會論文集,高雄(2008)。
28. 陳榮河、何嘉浚,”土釘擋土工法導論”,地工技術,第98期,第5-16頁(2003)。
29. 范嘉程,”土釘擋土結構最佳化設計之探討”,地工技術,第98期,第27-38頁(2003)。
30. 李有豐,「高摩擦力之FRP連接結構」,中華民國專利,證書號數:M4960080,99年5月11日。
31. http://blog.udn.com/giveman/3211156
32. http://goo.gl/W717yC
33. http://www.baw.de/en/index.php.html
34. http://www.gulfsynthetics.com/
35. http://www.sireg.it/en/geotechnics/products/carbopree/
36. www.moeacgs.gov.tw/
37. www.swcb.gov.tw/
論文全文使用權限:不同意授權