現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:都會區公路非點源污染調查及BMPs削減效益評估 [以論文名稱查詢館藏系統]
論文英文名稱:Nonpoint Source Pollution Survey and BMPs Benefit Assessment for Urban Highways [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:工程科技研究所
畢業學年度:102
出版年度:103
中文姓名:王韻瑾
英文姓名:Yunn-Jiin WANG
研究生學號:96679005
學位類別:博士
語文別:中文
口試日期:2014-06-18
論文頁數:151
指導教授中文名:林鎮洋
指導教授英文名:Jen-Yang Lin
口試委員中文名:何嘉浚;林志棟;陳起鳳;陳純敬
口試委員英文名:Chia-Chun Ho;Jyh-Dong Lin;Chi-Feng Chen
中文關鍵詞:公路逕流非點源污染暴雨採樣暴雨初期沖刷單位污染負荷
英文關鍵詞:Road RunoffNonpoint Source PollutionStorm SamplingStorm First FlushUnit Areal Loading
論文中文摘要:為了解台灣都會區公路非點源污染濃度與成分性質,本研究於北部都會區省道公路參考相關環境背景、交通量、道路屬性、速限、車輛種類等考量因素,並規劃分為水質採樣及乾沉降蒐集樣本,透過樣本採集及檢測試驗分析,了解非點源污染濃度如SS、TP、重金屬......等及乾沉降物質之顆粒尺寸、重金屬含量等量化結果。從本研究區域之事件平均濃度,進而利用簡易法推估都會區公路單位污染負荷量與污染總量。而乾沉降物質進行粒徑分析,以了解沉澱物質的顆粒尺寸及分布情形,並進行ICP分析重金屬含量成分,以了解都會區公路乾沉降物質之重金屬含量性質。
  研究結果顯示:SS濃度變化與強度及流量變化有關,當流量速度增加,污染物質就迅速被沖出,F場址台64線高架快速公路較一般E場址公路橋梁的3倍。而NH3-N濃度會隨著降雨增強而降低,以E場址 台3線華江橋之3.24mg/L為F場址之3倍高;TP濃度亦以E場址最高,約為D場址之3倍高。在重金屬濃度方面,則大都以F場址為最高,如Cu、Zn、Hg、As、Ni等,顯示重金屬污染貢獻嚴重,若排放累積於流經土壤或進入水體,皆會影響人類身體健康及環境生態系,也顯示暴雨初期逕流水實有必要再處理。
本研究場址多屬高架橋式,就EMCs濃度分析來說,SS濃度相對其它文獻之高架橋濃度來得高,約為1.15~6.21倍,也顯示高架橋型態之SS濃度較其它公路型態的SS濃度來得高,即公路的交通量愈高,其懸浮固體(SS)負荷濃度相對來得高;與相關國內外文獻結果一致。在乾沉降採樣結果分析,每天單位面積內總固體物質負荷量為為2.01~5.14g/m2,以C場址高架橋快速道路所產生的乾沉降微粒物質總負荷量為最高,較一般橋梁場址來得高,且依其粒徑分析結果顯示粗顆粒物質遠高於細顆粒物質,其大氣懸浮粒子PM10(10μm以下為小顆粒)約佔1.46﹪~1.25﹪,以表示小粒徑顆粒漂浮存在大氣沉降中。而重金屬部分經分析結果,顯示包含Pb、Cu、Fe、Na、Ni等,Fe含量更高達47,200ppm,Na含量達3,506.67ppm,顯示屬高架快速公路之C場址,其Fe、Zn、 Pb、Ni 重金屬含量皆高於A、B 場址。Ni 重金屬含量也僅有C場址被檢驗出,顯示高架橋快速公路之重金屬含量高。
由本研究C與F場址之乾沉降蒐集與水質EMCs濃度結果顯示,C與F同屬一個場址,係為進行乾沉降及水質採樣兩種方式,其重金屬濃度分析結果,C場址之乾沉降總固體物重金屬分析Pb、Zn、Fe、Ni等含量均為最高。F場址之水質EMCs濃度分析結果顯示,其Pb、Zn、Ni等亦比其它場址高,兩者試驗結果一致;也顯示不管是乾沉降蒐集或水質採樣EMCs濃度分析,二者應有關聯性且交通量愈大其重金屬含量也最高。
故公路開發前之規劃設計中,即應大幅考量除採行符合生態環保的工程,更應考量公路逕流水污染物的截流、滯留、淨化等有效的管制措施,以確保地表逕流水經過相關入滲設施、雨花園(Rain Garden)、濕地…等控制措施,來削減暴雨初期逕流水的非點源污染物,再排放入集水區或河溪中,以確保人類賴以維生的水資源環境品質。
論文英文摘要:In order to find out non-point source pollution concentration and composition in Taiwan urban road . The study refer to the relevant environmental background, traffic volume, road attributes, speed limit, vehicle type and other considerations, at north urban road of Taiwan. And planning into water sampling and dry deposition collected, through sample collection and testing analysis to understand the concentration of non-point source pollution, such as SS, TP and heavy metals,... etc. and do sediment particle size analysis, heavy metal content of dry
deposition to get quantitative results.
By the mean concentration of event, thus use simple method estimating nonpoint pollution unit areal loading and total pollution amount of urban road. We can describe precipitation particle size, distribution and heavy metals content of dry deposition sediment in urban roads. through particle size analysis of dry
deposition sediment and heavy metal content by ICP analysis component .
The results showed: SS concentration is relative to rain intensity and flowrate, while increasing the flowrate, contaminants are flushed out quickly, F site 64-lane Elevated express roads than the E sites, urban roads and bridges, SS concentration of F is three times than E’s. The NH3-N concentrations decreased with rainfall enhancement. site E ,Tai -Line 3, Hua-jiang bridge. The NH3-N 3.24mg / L is three times higher to the F site.TP E sites were also the highest concentration, about three times higher in the D site. In terms of heavy metal concentrations, the site is mostly in F is the highest, such as Cu, Zn, Hg, As, Ni, etc., showing serious contribution to heavy metal pollution, If emissions accumulate in the soil or into the water. It can affect both human health and environmental ecosystem, also
shows the initial storm runoff water is really necessary reprocessing.
The study sites are mostly viaduct on EMCs concentration analysis is, SS concentration relative to other literature viaduct concentration is higher, about 1.15 to 6.21 times, also shows that the concentration of the viaduct type SS concentration than that other types of highway is higher, the higher the heavy traffic, and suspended solids(SS)with a load concentration for more high ; consistent with the results of the relevant literature. The heavy traffic higher, the
suspended solids(SS) concentrations higher.
The results of the analysis of heavy metals showed containing Pb, Cu, Fe, Na, Ni, etc., Fe content as high as 47,200 ppm, Na content of 3,507 ppm, display viaduct expressway C site , whose Fe, Zn, Pb, Ni content of heavy metals were higher than A,B sites. Ni heavy metal content also checked out only in C site,
showing high heavy metal content in viaduct expressway.
The deposition and EMCs concentration in C and F site ,in this study
,showed C and F belong to the same site, for the purpose of dry deposition and water quality sampling in two ways, the results of its analysis, heavy metal concentration of deposition in C site, Pb, Zn, Fe, Ni are the highest. EMCs water concentration analysis in F site showed that Pb, Zn, Ni, are also higher than other sites, both of which test results are consistent. Also shows whether it is dry deposition or water quality sampling EMCs concentration analysis, both of which should have relevance and the greater the amount of traffic their heavy metal
content is highest.
Therefore, prior to the development of planning and design, that is considered to be a significant, addition to the adoption of eco-environmental engineering methods, and more Should consider runoff pollutants closure, retention, purification and other effective control measures to ensure that runoff water infiltration through the relevant facilities, rain gardens (Rain Garden), wetlands and other control measures to reduce pollution runoff water thing, and then discharged into rivers in the catchment area or to ensure mankind's living
environment quality of water resources.
論文目次:摘要 i
ABSTRACT iii
誌 謝 vi
目錄 vii
表目錄 x
圖目錄 xiii
第一章 緒論 1
1.1研究動機 1
1.2研究目的 2
1.3研究內容及流程 2
第二章 文獻回顧 5
2.1非點源污染 6
2.2公路產生之污染源種類 8
2.2.1乾沉降污染源 10
2.3公路暴雨初期污染濃度 15
2.4單位污染負荷計算 21
2.5非點源污染之最佳管理措施 22
2.5.1 公路應用之結構性BMPs設施 26
2.5.2 公路應用之非結構性BMPs設施 29
第三章 研究方法與評估分析 31
3.1研究場址 31
3.2乾沉降採樣場址之背景資料 34
3.2.1地理環境 37
3.2.2交通量成長趨勢 38
3.2.3降雨特性與統計 40
3.3水質採樣場址之背景資料 42
3.3.1地理環境 45
3.3.2交通量成長趨勢 46
3.3.3降雨特性與統計 48
3.4乾沉降採樣與分析 50
3.4.1乾沉降採樣與蒐集方法 50
3.4.2乾沉降固體物採樣與分析 54
3.4.3乾沉降固體物粒徑分析 55
3.4.4乾沉降固體物重金屬分析 58
3.5 暴雨初期沖刷逕流水採樣與分析 58
3.5.1水質採樣位置說明 59
3.5.2暴雨初期沖刷逕流採樣條件 60
3.5.3各場址採樣頻率 65
3.5.4水質分析檢測項目 66
3.5.5單位污染負荷公式 67
第四章 結果與討論 69
4.1乾沉降採樣結果及分析 69
4.1.1乾沉降固體物採集總量分析 69
4.1.2乾沉降固體物粒徑尺寸分析 70
4.1.3乾沉降固體物重金屬評估分析 80
4.2水質採樣結果及分析 83
4.2.1污染濃度分析 84
4.2.2 暴雨強度與污染濃度之關聯分析 85
4.2.3 EMC濃度分析計算結果 96
4.3單位污染負荷分析 101
4.3.1污染總量推估與比較 101
4.3.2與其他土地利用型態之單位污染負荷比較 102
4.4國內外公路平均濃度比較 105
4.5國內外公路單位污染負荷比較 110
4.6未開放通車前之公路逕流污染 112
第五章 結構性BMPs採用策略分析 115
5.1 最佳管理措施選擇 115
5.2 設置入滲溝成本效益分析 116
5.2.1 預算分析 116
5.2.2 維護需求分析 117
5.2.3 可服務集水區面積 117
5.2.4 非點源污染削減量評估分析 118
5.3 設置雨花園成本效益分析 123
5.3.1預算分析 123
5.3.2維護需求分析 124
5.3.3可服務集水區面積 124
5.3.4 非點源污染削減量評估分析 125
第六章 結論與建議 130
6.1結論 130
6.2 建議 132
參考文獻 134
附錄A﹕採樣工作計畫 137
論文參考文獻:[1] 林鎮洋等,非點源污染最佳管理作業彙編,台北﹕行政院環境保護署委
託研究,2010,第1-7頁。
[2] M. P Wanielista and Y. A. Yousef, Stormwater Management, New York:
John Wiley and Sons, 1993, pp.579.
[3] M. L. Haal, P. Surje and H. Rouk, “Traffic as a source of pollution,” Estonian J. Eng. vol.14, 2008, pp.65-82.
[4] 盧至人、邱應志,非點源污染及市區雨水管理,台北:國立編譯館出版,2000,第227-330頁。
[5] D. Drapper, R. Tomlinson and P. Williams, “Pollutant Concentrations in Road Runoff: Southeast Queensland Case Study,” Journal of Environment Engineering, vol.126, no.4, 2000, pp.313-320.
[6] G. C. Chang, J. H. Parrish and C. Souer, The First Flush of Runoff and Its Effect on Control Structure Design, Austin: Environmental and Conservation Services, 1990.
[7] K. Wada and S. Fujii, “Estimation of pollutant loads from urban roadway runoff,” Water Science & Technology, vol.61, no.2, 2010, pp.345-354.
[8] 孫臆勛,灰塵與雨水作用造成建築物外牆污染之研究-以表面粗度與角度因子探討之,碩士論文,國立成功大學建築研究所,台南市,2002。
[9] D. G. Kim, K. Jeong and S. O. Ko, “Evaluation of Road Sweeping For the Reduction of Nonpoint Source Pollutants Load from Highway Runoff,” The 4th IWA-ASPIRE Conference & Exhibition, Tokyo, Japan, 2011, pp.134-151.
[10] 呂局校,高雄市大氣中多環芳香烴化合物濃度特徵之調查分析,碩士論文,國立中山大學環境工程研究所,高雄市,2006。
[11] M. E. Barret, J. F. Malina, R. J. Charbeneau and G. H. Ward, Characterization of highway runoff in the Astin, Texas area, University of Texas: Center for Research in Water Resources, 1995.
[12] 溫清光、張智華,「台灣非點源污染管理及控制現況-(一)社區、工業區、遊憩區、營建工地」,中美非點源污染控制管理與技術合作研討
會,台北,1998。
[13] L. H. Kim, S. O. Ko, S. Jeong and J. Yoon, “Characteristics of washed-off pollutants and dynamic EMCs in parking lots and bridges during a storm,” Science of the Total Environment, vol.376, no.1-3, 2007, pp.178-184.
[14] 鄧宇傑,公路逕流之非點源單位污染負荷研究,碩士論文,國立台北科
技大學土木與防災研究所,台北市,2010。
[15] E. Passeport and W. F. Hunt, “Asphalt Parking Lot Runoff Nutrient Characterization for Eight Sites in North Carolina, USA,” Journal of Hydrologic Engineering, vol.14, no.4, 2009, pp.352-361.
[16] S. L. Lau and M. K. Stenstrom, “Metals and PAHs adsorbed to street
particles,” Water Res., vol.39, 2005, pp.4083-4092.
[17] USEPA, Controlling nonpoint source runoff pollution from roads, highways
and bridges, U.S. EPA: Report EPA-841-F-008a, 1995.
[18] L. Berman, C. Hartline, N. Ryan and J. Thorne, “Urban Runoff: Water Quality Solutions,” American Public Works Association, no.61, 1991.
[19] 黃家勤,公路逕流污染調查與控制方法研究,行政院國家科學委員會專題研究計畫成果報告,台南,NSC91-2211-E-214-003,2003。
[20] M. Kayhanian, C. Surverkropp, A. Ruby and K. Tsay,“Characterization and prediction of highway runoff constituent event mean concentration,” Journal of Environmental Management, vol.85, no.2, 2007, pp.279-295.
[21] J. S. Wu, C. J. Allan, W. L. Saunders and J. B. Evett, “Characterization and pollutant loading estimation for urban and rural highway runoff,” J. Environ.
Eng., vol.124, no.7, 1998, pp.584–592.
[22] USEPA, Load Estimation Techniques.”National Management Measures to Control Nonpoint Pollution from Agriculture, Washington, DC, 2012.
[23] US EPA, Geographic Targeting: Selected State Examples. Washington D.C:
EPA Report #EPA-841-B-93- 001, 1993.
[24] S. Wu, Literature Review for BMP Selection Processes Considering Pollutant Loading From Highway and Watershed Objectives, 2004.
[25] US Department of Transportation-Federal Highway Administration, Storm water Best Management Practices in an Ultra-Urban Setting, Selection and
Monitoring, 2003.
[26] Urban Drainage and Flood Control District Denver, Urban Storm Drainage
Criteria Manual - Best management practices, 1999.
[27] Auckland Regional Council, Storm water Management Devices: Design Guidelines Manual, Auckland: Auckland Reginal Council, 2003.
[28] Department of Environmental Protection Bureau of Watershed Management, Pennsylvania Storm water Best Management Practices Manual, US: Department of Environmental Protection Bureau of Watershed Management﹐
2006.
[29] US EPA .Preliminary Data Summary of Urban Storm water Best Management Practices, EPA-821-R-99-012, US: EPA, 1999.
[30] 行政院環保署,降雨逕留非點源污染最佳管理技術(BMPs)手冊,台北,
2013。
[31] 交通部公路總局網站,公路統計資訊/公路交通量調查統計表,2013.
[32] 陳彥甫,茶園及林地非點源單位污染負荷之研究,碩士論文,國立台北
科技大學環境規劃與管理研究所,台北,2003。
[33] 林鎮洋、余嘯雷,非點源污染削減技術試驗計畫-MCTT多槽處理技術,
行政院環境保護署,2007。
[34] K. E. F. Noll, K. Y. P. Fang and L. A.Wakins, “Characterization of the Deposition of Particles from the Atmospheric to a Flat Plate,” Atmospheric
Environment, vol.22, 1988, pp.1461-1468.
[35] E. D. Driscoll, P. E. Shelly and E. W. Streeker, Pollutant loadings and impacts from storm water runoff, Vol,III: Analytical investigation and research report, Washington D. C.: Federal Highway Administration, 1990.
論文全文使用權限:同意授權於2017-08-04起公開