現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:GFRP框架採FRP格柵型式剪力牆側推實驗與數值分析之研究 [以論文名稱查詢館藏系統]
論文英文名稱:A Study on Pushover Test and Numerical Analysis of GFRP Frame with FRP Grating Shear Wall [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:102
出版年度:103
中文姓名:吳偉誠
英文姓名:Wei-Cheng Wu
研究生學號:101428004
學位類別:碩士
語文別:中文
口試日期:2014-06-29
論文頁數:92
指導教授中文名:李有豐
口試委員中文名:陳清泉;徐增興;邱佑宗
中文關鍵詞:玻璃纖維強化高分子框架格柵側推實驗
英文關鍵詞:Glass Fiber Reinforced Plastic Composite MaterialFrameGratingPushover Test
論文中文摘要:本論文係使用具有質量輕、耐候性佳及高強度比之玻璃纖維強化高分子(Glass Fiber Reinforced Plastic , GFRP)複合材料構件,進行格柵型式剪力牆側推實驗與分析。首先將GFRP構件組合成框架,另將GFRP格柵版放置於框架中形成格柵式剪力牆,並進行側推實驗並探討其成效。試驗規劃使用雙腹板I型斷面構件作為框架之梁-柱部分,其梁-柱接頭則利用GFRP版材裁切成所需形狀。梁-柱接合方式利用環氧樹脂與GFRP插銷之接合方式。框架型式分成空構架、加入薄型格柵剪力牆及加入厚型格柵剪力牆。兩種格柵式剪力牆再細分成加入兩種不同填充材料並進行側推實驗。實驗顯示,加入格柵剪力牆後其極限載重、初始勁度分別提升1.3倍及1.4倍。加入填充材後其極限載重、初始勁度最大可分別提升2.5倍及4.5倍。SAP2000數值模擬軟體之應用,以塑性鉸方式進行框架的設定;而格柵構件則係使用「等值柱概念」進行參數設定。分析結果與實驗值比較之誤差皆在10 %以內,顯示分析與實驗力-位移曲線相近,期望本論文之數值模型可供後續相關研究使用。
論文英文摘要:This thesis presents the push-over test of a frame system made from lightweight, high-strength and weather-resistant GFRP composite. FRP grating shear wall system is combined into the frame and the mechanical behavior and effectiveness of the grating shear wall is investigated in a push-over test. The columns and beams of the frame are made of double-web I-beams. The beam-column joints are made by inserting cut GFRP platess into the hollow of the beam and column, and then locking the joint with GFRP pins in addition to epoxy adhesive. Three types of frame systems were involved: un-grated frame; thin-grated frame; and a thick-grated frame. Each of the gratings were infilled with two different materials. Experimental results show that the maximum ultimate strength and initial stiffness increased by 1.3 folds and 1.4 folds, respectively, after placing the unfilled-grating system in the frame. After adding the infill material, both the ultimate strength and initial stiffness were enhanced by 2.5 folds and 4.5 folds respectively.
Using SAP2000, a plastic hinge was set for the frame. The grating members of this study use an “equivalent column” plastic hinge concept. Analysis results showed a good correlation with experimental results with an absolute error less than 10 %. The numerical models of this thesis could be used for future studies.
論文目次:中文摘要 i
英文摘要 iii
誌謝 v
目錄 vi
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 1
1.3 研究目的及內容 3
第二章 文獻回顧 5
2.1 FRP構件相關研究 5
2.2 FRP構件接合相關研究 6
2.3 框架與格柵相關研究 9
第三章 實驗規劃 13
3.1 FRP複合材料介紹 13
3.1.1 材料組成 13
3.1.2 材料特性 15
3.1.3 製造方法 17
3.2 實驗材料 18
3.3 實驗設備與方法 21
3.3.1 實驗設備 21
3.3.2 實驗方法 22
3.3.3 填充材料試驗 23
3.4 試體編號介紹與製作流程 26
第四章 實驗結果與比較 37
4.1 單柱實驗與空構架實驗 37
4.1.1 單柱試體 37
4.1.2 空構架(F1)試體 39
4.2 格柵式剪力牆實驗 44
4.2.1 薄型空格柵剪力牆(FG1E)試體 44
4.2.2 厚型空格柵剪力牆(FG2E)試體 48
4.2.3 填充材S1薄型格柵剪力牆(FG1S1)試體之實驗結果 52
4.2.4 填充材S1厚型格柵剪力牆(FG2S1)試體 55
4.2.5 填充材S2薄型格柵剪力牆(FG1S2)試體 59
4.2.6 填充材S2厚型格柵剪力牆(FG2S2)試體 63
4.3 實驗結果比較 66
4.3.1 空構架與加入格柵之剪力牆實驗結果比較 66
4.3.2 薄型格柵型式剪力牆之實驗結果比較 67
4.3.3 厚型格柵型式剪力牆之實驗結果比較 68
4.4 試體消能效益比較 70
4.5 小結 74
第五章 非線性側推分析 76
5.1 SAP2000數值分析軟體之參數與設定 76
5.2 各組試體實驗結果和分析結果比較 78
5.3 小結 85
第六章 結論與建議 87
6.1 結論 87
6.2 建議 88
參考文獻 89
論文參考文獻:1.Ascione, F., “Mechanical Behaviour of FRP Adhesive Joints: A Theoretical Model,” Composites Part B: Engineering, Vol. 40, No. 2, pp. 116-124 (2009).
2.Ascione, F., “Adhesive Lap-Joints A Micro-Scale Numerical Investigation,” Mechanics Research Communications, Vol. 37, No. 2, pp. 169-172 (2010).
3.Ascione, F., Feo, L. and Maceri, F., “On the Pin-Bearing Failure Load of GFRP Bolted Laminates: An Experimental Analysis on the Influence of Bolt Diameter,” Composites Part B: Engineering, Vol. 41, No. 6, pp. 482-490 (2010).
4.Bao, W., Shao, Y. S. and Xing, L. T., “Measuring Method of Rotation Used in Research on Steel Frame Semi-Rigid Beam-to-Column Connection,” Advanced Materials Research, Vol. 243, pp. 1439-1442 (2011).
5.Castro, J. d. and Keller, T., “Design of Robust and Ductile FRP Structures Incorporating Ductile Adhesive Joints,” Composites Part B: Engineering, Vol. 41, No. 2, pp. 148-156 (2010).
6.Chataigner, S., Caron, J. F. and Duong, V. A., “Experimental and Numerical Investigation of Shear Strain Along an Elasto-Plastic Bonded Lap Joint,” Construction and Building Materials, Vol. 25, No. 2, pp. 432-441 (2010).
7.Citipitioglu, A. M., Haj-Ali, R. M. and White, D. W., “Refined 3D Finite Element Modeling of Partially-Restrained Connections Including Slip,” Journal of Constructional Steel Research, Vol. 58, No. 5, pp. 995-1013 (2002).
8.Clarke, J. L., “Structural Design of Polymer Composites – EUROCOMP Design Code and Handbook,” Composite Structures, Vol. 35, No. 4, pp. 197-205 (1996).
9.Davalos, J. F., Salim, H. A., Qiao, P. and Lopez-Anido, R., “Analysis and Design of Pultruded FRP Shapesunder Bending,” Composites Part B: Engineering, Vol. 27, No. 3, pp. 295-305 (1996).
10.Diaz-Gomez, C., Optimum Design of Semi-Rigid Joint by Numerical Simulation and Kriging Models, Ph.D. Thesis, Technical University of Cartagena, Spain (2010).
11.Fawzia, S., Zhao, X. L. and Al-Mahaidi, R., “Bond–Slip Models for Double Strap Joints Strengthened by CFRP,” Composite Structures, Vol. 92, No. 9, pp. 2137-2145 (2010).
12.Gai, X., Darby, A., Ibell, T. and Evernden, M., “Experimental Investigation into a Ductile FRP Stay-in-Place Formwork System for Concrete Slabs,” Construction and Building Materials, Vol. 49, pp. 1013-1023 (2013).
13.Hai, N. D., Mutsuyoshi, H., Asamoto, S. and Matsui, T., “Structural Behavior of Hybrid FRP Composite I-Beam,” Construction and Building Materials, Vol. 24, No. 6, pp. 956-969 (2010).
14.Kapti, S., Sayman, O., Ozen, M. and Benli, S., “Experimental and Numerical Failure Analysis of Carbon/Epoxy Laminated Composite Joints under Different Conditions,” Materials and Design, Vol. 31, No. 10, pp. 4933-4942 (2010).
15.Karakuzu, R., Demirgoren, O., Icten, B. M. and Deniz, M. E., “Failure Behavior of Quasi-Isotropic Laminates with Three-Pin Loaded Holes,” Materials and Design, Vol. 31, No. 6, pp. 3029-3032 (2010).
16.Neto, A. B. and Revere, H. L., “Flexural Stiffness Characterization of Fiber Reinforced Plastic (FRP) Pultruded Beams,” Composite Structures, Vol. 81, No. 2, pp. 274-282 (2007).
17.Schniepp, T. J., Design Manual Development for a Hybrid, FRP Double-Web Beam and Characterization of Shear Stiffness in FRP Composite Beams, M.S. Thesis, Virginia Polytechnic and State University, USA (2002).
18.Subramanian, C. and Senthilvelan, S., “Effect of Reinforced Fiber Length on the Joint Performance of Thermoplastic Leaf Spring,” Materials and Design, Vol. 31, No. 8, pp. 3733-3741 (2010).
19.Yorgun, C. and Bayramoglu, G., “Cyclic Tests for Welded-Plate Sections with End-Plate Connections,” Journal of Constructional Steel Research, Vol. 57, No. 12, pp. 1309-1320 (2001).
20.陳振瑋,以等值柱模型分含牆RC構架,碩士論文,國立台北科技大學,台北(2005)。
21.余忠政,FRP構件物理及化學結合剪力強度之研究,碩士論文,國立台北科技大學,台北(2012)。
22.王柏翔,GFRP框架採FRP接頭側推實驗與數值分析之研究,碩士論文,國立台北科技大學,台北(2013)。
23.土木學會構造工委員會FRP橋梁研究小委員會,FRP橋梁-技術とその展望,社團法人土木學會,日本(2004)
24.李有豐,FRP複合材料於土木與建築工程之應用,台灣區複合材料工業同業公會,臺北,臺灣(2012)。
25.游錫揚,纖維複合材料,國彰出版社,第7-13頁,臺中,臺灣(1997)。
26.許明發、郭文雄,複合材料,高立圖書有限公司,臺北,臺灣(2004)。
27.李森柟,SAP2000結構設計實務,科技圖書股份有限公司出版,臺北,臺灣(2005)。
28.http://www.creativepultrusions.com/
29.http://www.grancrete.net/
30.http://www.nihonfrp.co.jp/
論文全文使用權限:同意授權於2019-08-04起公開