現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:以快速且微侵入法量測感潮河段流量 [以論文名稱查詢館藏系統]
論文英文名稱:A fast and minimally intrusive method of discharge measurement in a tidal stream [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:工程科技研究所
畢業學年度:102
出版年度:103
中文姓名:郭俊楨
英文姓名:June-Jein Kuo
研究生學號:96679003
學位類別:博士
語文別:中文
口試日期:2014-06-06
論文頁數:158
指導教授中文名:陳彥璋
口試委員中文名:龍悟生;陳主惠;譚智宏;鄭光炎;楊翰宗
中文關鍵詞:感潮河段聲波都普勒流速儀流量量測資訊熵平均與最大流速關係水位與通水斷面積關係
英文關鍵詞:Tidal StreamAcoustic Dopplor current profilerdischarge measuremententropyrelation of mean and maximum velocitiesrelationship between water stage and cross-sectional area
論文中文摘要:感潮河段之水理情形,主要受到河口潮位變化與河川上游流量的影響,隨著河川流量、潮汐強弱而有所改變,在此複雜流況之河段量測流量時,傳統流量量測儀器及方法的準確性並不高,既耗時效率也低,因此有必要利用有別於傳統之量測儀器及方法量測感潮河段流量。本研究選在基隆河感潮河段南湖大橋,將鉛魚裝在高精度聲波杜普勒流速儀Argonaut-SW由捲揚器垂放於欲施測之垂線並把儀器改裝為可移動式,由水面往下量測,以河川斷面之方式實際量測感潮河段流量;並應用以機率觀念為基礎之流速分佈理論,推求各測線之平均流速,及利用中斷面法求取流量。再利用前所量測資料建立一高效率流量量測方法,即利用平均流速與最大流速之關係為定值,並在發生最大流速所在之垂線位置推估最大流速,進而推估平均流速。其次由水位與通水斷面積關係求得通水面積,將兩者乘積後即可取得推估流量資料。於本研究建立之高效率流量量測方法結果良好,所推估流量和實測流量經比較後並具有相當之準確度,可於未來測得即時流量,大幅降低於感潮河段流量量測之時間、人力及成本。
論文英文摘要:The hydrodynamic in estuarine river is affected by inflow and tide, so that the end of the estuarine river is often changed. Measure discharge is inaccurately at estuary is affected by tidal. The tidal stream is unsteady,we need efficient discharge measurement instrumentation and method to measure discharge. The study used the Argonaut-SW measurement instrumentation measured discharge for complete tidal in the Keelung River. And accurate calculation of discharge by Chiu`s Velocity Distribution and the Mid-Section Method. Then Use the data to establish an efficient method of discharge measurement in tidal streams by relationship between mean velocity and maximum velocity and relationship between water level and cross-sectional area. This efficient method can be used with any current meter to reduce the time and cost of discharge measurement in tidal streams.
論文目次:摘要 I
ABSTRACT II
誌謝 III
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1.1 前言 1
1.2研究動機與目的 2
1.3研究架構流程 3
第二章 文獻回顧 5
2.1國內外感潮河段流量量測 5
2.2 感潮河段流量量測儀器 20
2.2.1儀器介紹 20
2.2.2旋杯流速儀 20
2.2.3聲波杜普勒流速儀 22
2.3感潮河段流量量測方法 34
2.3.1旋杯流速儀觀測流量量測法 34
2.3.2聲波杜普勒流速儀流量量測法 37
2.4通水斷面積量測 39
2.4.1水位-斷面積之關係 41
2.5 流速分佈理論 41
2.5.1對數律與冪次律觀點之流速量測理論 42
第三章 研究方法 46
3.1感潮河段流量量測 46
3.1.1 前言 46
3.1.2 聲波杜普勒流速儀之原理 47
3.1.3 聲波杜普勒流速儀量測及其改良 49
3.2流速分佈機率理論 55
3.2.1. 流速分佈機率理論 55
3.3 流量量測及高效率流量量測方法建立 59
3.3.1現場測站流量量測 60
3.3.2高效率流量量測方法建立 61
3.3.2.1最大流速位置(Y軸) 62
3.3.2.2平均流速與最大流速之關係 62
3.3.2.3水位與通水斷面積之關係 63
3.3.3準確性分析 63
3.3.4量測誤差分析 64
第四章 研究區域及觀測資料 66
4.1研究區域概況 66
4.2.研究區域流量觀測資料描述 69
第五章 研究結果與討論 71
5.1.南湖大橋流量量測 71
5.2 南湖大橋流量推估 81
5.3.利用高效率流量量測方法推估流量及驗證 85
5.4.量測準確性及誤差分析 87
5.4.1.量測準確性分析 87
5.4.2量測誤差分析 88
5.4.3.淨流量體積統計 89
5.5.傳統流量量測法和高效率流量測法效益比較 90
第六章 結論 92
參考文獻 95
附 錄 102
符號彙編 160
論文參考文獻:1. 李明靜、賴泉基、呂珍謀,河川表面流速與流量非接觸式量測方法之發展及應用,博士論文,國立成功大學水利及海洋工程研究所,台南,2003。
2. 李昱廷、王傳益,明渠流平均流速推估方法之研究與應用,碩士論文,私立逢甲大學土木及水利工程研究所,台中,2004。
3. 高崎忠勝,大洋健二,杉原大介, River Level Estimation For Small River In Tidal Reach ,平23,東京都土木技術支援人才育成中心,2011,pp.147-152。
4. 經濟部水利署,新店溪青潭自來水水源水質保護區水質水量監測計畫—臺北水源特定區水文觀測現代化建置,台北,經濟部水利署,2005。
5. 經濟部水利署,台灣河川流量及泥砂量觀測技術之開發與應用(一),台中:經濟部水利署,1995。
6. 橫尾啟介,吉田靜男,岡田幸七,野村佐和美,Estimation Of River Dischagge Using ADCP In An Estuary,河川技術論文集,2007.9.30,PP. 931-936。
7. 經濟部水利署,淡水河全潮流量觀測概要,台北,水利署電子報第43期,2013。
8. 經濟部水利署,河川水位流量觀測手冊,台中,水利署,2004。
9. 陳博志,淡水河系感潮河段全潮流量量測,碩士論文,國立台北科技大學土木與防災研究所,台北,2010。
10. 楊孝忠,杜普勒流速儀在高流量觀測上之應用,碩士論文,國立台北科技大學土木與防災研究所,台北,2006。
11. 神田徹, “感潮河川的水位變動,” The 20th natural hazard symposium, 神戶:神戶大學, 1983.
12. Argonaut-Sw shallow water,level and velocity, San Diego, SonTek/YSI, CA, 2009.
13. SonTek, Argonaut-Sw system Mannual Firm ware, U.S.A.:SonTek, version 11.8, 2007, pp. 24.
14. Bureau of Reclamation,Water Measurement Manual, Denver, CO: Government Printing Office, 2001.
15. H. Chanson, M. Trevetthan, and S. Aoki, “Acoustic DOPPLER Velocimetry (ADV) in small estuary: Field experience and signal post-processing,” Flow Measurement and Instrumentation, Vol. 19, no. 5, 2008, pp. 307-313.
16. Y.-C. Chen, An Efficient Method of Discharge Measurement. Ph.D. Dissertation, University of Pittsburgh, Pittsburgh, PA, 1998.
17. Y.-C. Chen, and C.-L. Chiu, “A fast method of flood discharge estimation,” Hydrol. Process., vol. 18, no. 9, 2004, pp. 1671–1684.
18. C.-L., Chiu, and Y.-C. Chen, “A fast method of discharge measurement in open-channel flow,” In: Abl, S.T., Young-Pezeshk, J., Watson, C.C., (Eds.), Water Resource Engineering’98, ASCE, Reston, VA, 1998, pp. 1721–1726.
19. Y.-C. Chen, S.-P. Kao, H.-W. Chiang, “Defining an estuary using the Hilbert-Huang transform,” Hydrolog. Sci. J., vol. 58, no. 4, 2013, pp 841-853.
20. Y.-C. Chen, C.-M. Yang, N.-S. Hsu, T.-M. Kao, “Real-time discharge measurement in tidal streams by an index velocity,” Environ. Monit. Assess., vol, 184, no. 10, 2012, pp. 6423-6436.
21. Y.-C. Chen, and C.-L. Chiu, “An efficient method of discharge measurement in tidal streams,” J. Hydrol., vol. 265, no. 1-4, 2002, pp. 212-224.
22. Y.-C. Chen, W.-S. Lung, H.-C. Yang, B.-J. Chen, and C.-H. Chen, “Pollutant Flux Estimation in an Estuary Comparison between Model and Field Measurement,” paper submitted to Environments, 2014.
23. C.-L. Chiu, “A natural law of open-channel flows.” In: Tickle,K.S., Goulter, I.C., Xu, C., Wasimi, S.A., Boucharat, F. (Eds.) , Stochastic Hydraulics ’96, Balkema, Rotterdam, The Netherlands, 1996, pp. 15–27.
24. C.-L. Chiu, “Velocity distribution in open-channel flow,” J. Hydr. Eng., ASCE, vol. 115, no. 5, 1989, pp. 576–594.
25. C.-L. Chiu, and Y.-C. Chen, “An efficient method of discharge estimation based on probability concept,” J. Hydraul. Res., vol. 41, no. 6, 2003, pp.589-596.
26. C.-L. Chiu, and J.-D. Chiou, “Entropy and 2-D velocity distribution in open-channels,” J. Hydr. Eng., ASCE, vol. 114, no. 7, 1988, pp.738–756.
27. C.-L. Chiu and C.A.A. Said, “Maximum and Mean Velocities and Entropy in Open-Channel Flow,” J. Hydr. Eng., ASCE, vol. 121, no. 1, 1995, pp. 26-35.
28. D. Coles, “The law of wake in the turbulent boundary layer,” J. Fluid Mech., vol. 1, no. 2, 1956, pp. 191-226.
29. C. B. Cook, M. C. Richmond, and J. A. Serkowski, “Observations of velocity conditions near a hydroelectric turbine draft tube exit using ADCP measurements,” Flow Measurement and Instrumentation, vol. 18, no. 3-4, 2007, pp.148-155.
30. T. Dalrymple, and M.A. Benson, Measurement of peak discharge by the slope-area method, US Geological Survey Techniques of Water-Resources Investigations, Book 3, Washington DC: US Geological Survey, 1967.
31. N. El‐Jabi, G. Wakim, and S. Sarraf, “Stage‐discharge relationship in tidal rivers,” J. Water Port C-ASCE, vol. 118, no. 2, 1992, pp. 166–174.
32. E. Garel, S. Nunes, J. M. Neto, R. Fernandes, R. Neves, J. C. Marques, and O. Ferreira, “The autonomous Simpatico system for real-time continuous water-quality and current velocity monitoring: Examples of application in three Portuguese estuaries,” Geo-Mar Lett, vol. 29, no. 5, 2009, pp.331–341.
33. J. W. Grubbs, and J. R. Pittman, Application of Acoustical Methods for Estimating Water Flow and Constituent in Perdido Bay, US Geological Survey Water-Resources Investigations Pater 97-4101,Tallahassee, FL: US Geological Survey, 1997.
34. C. Guay, Y. Choquette, and G. Durand, “Hydroacoustic Doppler technology: a key element in the improvement of winter hydrometric data quality,” Can. Water Resour. J., vol. 37, no. 1, 2012, pp.37-46.
35. R. W. Herschy Streamflow measuremen,New York: Taylor & Francis,2009.
36. D. J. Howes, C. M. Burt, and B. F. Sanders, “Subcritical contraction for improved open-channel flow measurement accuracy with an upward-looking ADVM,” J. Irrig. Drain. Eng.-ASCE, vol. 136, no. 9, 2010, pp. 617–626.
37. C. Huha, and C. Ward, “Flow measurements Using an upward-looking Argonaut-SW Doppler current meter,” Proceedings of the IEEE Working Conference on Current Measurement, 2003, pp. 35~39.
38. International Organization for Standardization (ISO), Measurement of Liquid Flow in Open Channels—Moving-Boat Method. Geneva, Switzerland: ISO ,1979.
39. D. Lozano, and L. Mateos, “Field evaluation of ultrasonic flowmeters for measuring water discharge in irrigation canals,” Irrig. Drain., vol. 58, no. 2, 2009, pp. 189–198.
40. Y. Lu and R. G. Lueck, “Using a Broadband ADCP in a Tidal Channel. Part I: Mean Flow and Shear,” Journal of Atmospheric and Oceanic Technology, vol. 16, 1998, pp. 1556-1567.
41. J. L. Martin, and S. C. McCutcheon, Hydrodynamics and transport for water quality modeling, Boca Raton, Florida: CRC Press, 1999.
42. T. Meile, G.De Cesare, K. Blankaert, and A. J. Schleiss, “Improvement of Acoustic Doppler Velocimetry in steady and unsteady turbulent open-channel flows by means of seeding with hydrogen bubbles,” Flow Measurement and Instrumentation,Vol. 19, no. 3-4, 2008, pp. 215-221.
43. D.S. Mueller, “Use of Acoustic Doppler Instruments for Measuring Discharge in Streams with Appreciable Sediment Transport,” in Conference of Hydraulic Measurements and Experimental Methods, ASCE, Estes Park, CO, 2002.
44. M. Muste, K. Yu, and M. Spasojevic, “Practical aspects of ADCP data use for quantification of mean river flow characteristics; Part I: moving-vessel measurements,” Flow Meas. Instrum., vol. 15, no. 1, 2004, pp. 1-16.
45. J. Nikuradse, “Gesetzmasigkeiten der turbulenten Stromung in glatten Rohren (Nachtrag),” Forschung auf dem Gebiet des Ingenieurwesens A, vol. 4, no. 1, 1933, pp. 44.
46. G. Parker, G. E. Ferguson, and S. K. Love, Water Resources of Southeastern Florida, US Geological Survey Water-Supply Pater 1255, Washington DC: US Government Printing Office, 1995.
47. G. B. Pillsbury, Tidal Hydraulics. Vicksburg, MS: US Army Corps of Engineers, Waterways Experiment Station, 1956.
48. L. Prandtl, “Bericht Uber Untersuchungen Zur Aubgebildetenz Turbulenz,” Z. Angew. Math. Mech., vol. 5, no.2, 1925, pp. 136.
49. D. W. Pritchard, What is an estuary: Physical viewpoint. In Lauff GH, editor. Estuaries, Washington, DC: American Association for the Advancement of Science; 1967, pp.3–5.
50. K.C. Pstra, Hydrology and Water Resources Engineering, Oxford U.K.: Alpha Science International, 2003.
51. S. E. Rantz, Measurement and computation of streamflow: Volume 1. Measurement of stage and discharge, US Geological Survey Water-Supply Paper 2175, Washington DC: US Government Printing Office; 1982.
52. S. E. Rantz, Measurement and Computation of Streamflow: Volume 2. Computation of Discharge, US Geological Survey Water-Supply Paper 2175, Washington DC: US Government Printing Office, 1982.
53. C. T. Roman, “Estimating water volume discharge through salt-marsh tidal channels: an aspect of material exchange,” Estuaries, vol. 7, no. 3, 1984, pp. 259-264.
54. C. A. Ruhl and M. R. Simpson, Computation of Discharge Using the Index-Velocity Method in Tidally Affected Areas, Scientific Investigation Report 2005-5004, Reston, VA: US Geological Survey, 2005.
55. C. A. Ruhl and M. R. Simpson, Computation of Discharge Using the Index-Velocity Method in Tidally Affected Areas, USGS Scientific Investigations Report 2005-5004, Reston, VA: US Geological Survey, 2005.
56. C. A. Ruhl and M. R. Simpson, Investigation of Hydroacoustic Flow-Monitoring Alternatives at the Sacramentto River at Freeport, California, Results of the 2002-2004 pilot study, Reston, VA: US Geological Survey, 2004.
57. C. E. Shannon, “A mathematical theory of communication,” The Bell System Technical Journal, vol. 27, 1948, pp.623–656.
58. M. R. Simpson, and R. Bland, “Methods for accurate estimation of net discharge in a tidal channel,” IEEE Journal of Oceanic Engineering, vol. 25, no. 4, 2000, pp.437-445.
59. F. J. da Silva Dias, L. D. Lacerda, R. V. Marins and F. C. F. de Paula, “Comparative analysis of rating curve and ADP estimates of instantaneous water discharge through estuaries in two contrasting Brazilian rivers,” Hydrol. Process., vol. 25, no. 14. 2011, pp. 2188-2201.SonTek, FlowTracker Handheld ADV Operation Manual, San Digeo CA: SonTek/YSI, 2002.
60. J. V. Sloat and M. Hull, Computing Discharge Using the Velocity-Index Method, San Diego, CA: Son Tek/Ysi, 2004.
61. SonTek, RiverSurveyor System Manual Software, Version 4.30, San Diego, CA: SonTek/YSI, 2007.
62. K. Subramanya, Flow in Open Channels, New York: McGraw-Hill, 1982.
63. SonTek/YSI, Argonaut-SW Brochure, San Diego, CA: SonTek/YSI, 2005.
64. D. P. Turnipseed, and V. B. Sauer, Discharge measurements at gaging stations, US Geological Survey Techniques and Methods book 3, Reston, Virginia: US Geological Survey; 2010.
65. T. B. Vermeyen, “Laboratory evaluation of a shallow-water acoustic Doppler profiling flowmeter,” World Water Congress 2005: Impacts of Global Climate Change-Proceedings of the 2005 World Water and Environmental Resources Congress; 2005, Pages 422.
66. S. Werblow, “Accurate sampling data crucial to creating Basin Management Plan,” Water and Wastewater internatiponal, vol. 21, no. 3, 2006, p.29.
67. K. Yokoo, M. N. Gawa, K. Hayama and M. Okuma, “Discharge Estimation For Tidal River Base On Continuous Measurement Using Acoustic Doppler Measurement Using Acoustic Doppler Current Profiler,”河川技術論文集,第10卷,2004.
論文全文使用權限:同意授權於2019-08-07起公開