現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:應用三維地下水模式FEMWATER評估SRI與傳統灌溉制度之地下水補注 [以論文名稱查詢館藏系統]
論文英文名稱:Applying 3D FEMWATER to Evaluate the Groundwater Recharge under SRI and Traditional Irrigation Schemes [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:102
出版年度:103
中文姓名:蔡誠斌
英文姓名:Cheng-Bin Tsai
研究生學號:101428069
學位類別:碩士
語文別:中文
口試日期:2014-07-21
論文頁數:73
指導教授中文名:陳世楷
指導教授英文名:Shih-Kai Chen
口試委員中文名:張誠信;張煜權;陳豐文
口試委員英文名:Cheng-Shih Jang;Yu-Chuan Chang;Feng-Wen Chen
中文關鍵詞:傳統灌溉制度SRIFEMWATER地下水補注入滲率田間灌溉用水量
英文關鍵詞:Traditional Irrigation SchemesSRIFEMWATERGroundwater rechargeInfiltration rateField irrigation requirement
論文中文摘要:近年來因氣候變遷導致極端氣候事件頻繁發生,臺灣水資源之調配運用面臨極為重之挑戰,根據水利署統計農業用水佔總用水量約70%,其中又以水稻灌溉用水為主,因此傳統灌溉制度的改良顯得相當重要。目前國際上所推廣的水稻強化栽培法(The System of Rice Intensification,SRI) 以田間不湛水並提估供作物最小需水量為原則,許多研究亦指出在不影響產量下,SRI具有非常良好的節水效果。然而,長期湛水的水田具有涵養地下水的功能,因此本研究旨在探討不同灌溉制度對於淺層地下水補注效益之影響。
本研究以濁水溪沖積扇扇頂區之實驗水田區(位於彰化田中)為例,利用具有變動邊界之三維地下水模式FEMWATER模擬不同灌溉用水操作,量化比較在SRI與傳統灌溉制度(續灌、輪灌)對淺層地下水的補注效益。情境可分為SC1、SC2、SC3等三種,前兩種情境考慮有無利用有效降雨,且考慮田區底層土壤壓力水頭為為現地量值-1.2 m,SC3情境則為田間容水量-3.3 m。模擬結果顯示SC1與SC2間並無明顯差異,SC3則為導致較高之田間入滲率。以SC1模擬結果為例,續灌之平均入滲率為最高為4.04 mm/day;輪灌次之,平均入滲率為4.00 mm/day;SRI最小,平均入滲率為3.92 mm/day。SRI在補注效益上略低於國內現行制度,補注量相較於續灌及輪灌,SRI分別減少2%及4%。在田間灌溉用水量上,SRI則顯著優於續灌及輪灌,分別節省約35%及9%之田間灌溉用水量。綜合模擬分析結果,相對於補注量之減少,SRI所節省之用水量遠高於傳統灌溉制度對地下水之補注效益。研究結果可作為水利相關事業部門規劃整體水資源經營管理策略之參考。
論文英文摘要:In recent years, the global climate change has frequently resulted in many extreme weather events in Taiwan, the water resource management and planning become a critical issue in this country. According to the WRA statistics that agricultural water occupies 70 percent of total water consumption, most of which are rice-cultivation irrigation. Therefore, improvement of the traditional irrigation schemes has become increasingly necessary. The System of Rice Intensification(SRI) has been internationally extended in recent decades, which is based on supplying crops with less irrigation water and do not continuously flood the paddy fields. Many researches also pointed out that this methodology has excellent water-saving effect without affecting rice yields. However, continuously flooding in the paddy field may be regarded as an important source for groundwater recharge. The objectives of this study was to evaluate the changes of groundwater recharge between the SRI and traditional irrigation schemes.
An experimental paddy field located in the proximal area of Choushui River alluvial fan (the largest groundwater region in Taiwan) was chosen as the study area. The three-dimensional finite element groundwater model (FEMWATER) with the variable boundary condition analog functions, was applied in simulating groundwater recharge under traditional irrigation schemes(continuous irrigation, rotational irrigation) and SRI methodology. The scenario analysis includes using effective rainfall or not (SC1, SC2), and the deep soil pressure head was set to be -1.2 m according to in-situ measurements. Soil moisture was set to be field capacity (-3.3m) in scenario SC3. The simulation results showed that there were no significant variations in SC1 and SC2, but low soil moisture in deep soil layers (SC3) will resulted in higher infiltration rate compared to SC1 and SC2. Taking the scenario SC1 as an example, the average infiltration rate for continuous irrigation, rotational irrigation, and SRI methodology were 4.04 mm/day, 4.00 mm/day and 3.92 mm/day, respectively. The groundwater recharge amount of SRI methodology was slightly lower than traditional irrigation schemes, reduced 4% and 2% compared with continuous irrigation and rotational irrigation, respectively. The field irrigation requirement amount of SRI methodology was significantly lower than traditional irrigation schemes, saving 35% and 9% compared with continuous irrigation and rotational irrigation, respectively. The SRI methodology obtained significant water-saving benefit compared to the disadvantage of reducing the groundwater recharge amount. The results could be used as a basis for the relevant government agency to formulate the integral water resource management strategies in the future.
論文目次:中文摘要 I
英文摘要 III
誌謝 VI
目錄 VII
表目錄 IX
圖目錄 X
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 2
1.3 論文架構與流程 2
第二章 文獻回顧 5
2.1 水稻強化栽培法 5
2.2 水稻強化栽培法之相關文獻 6
2.3 國內傳統田間用水管理 7
2.4 國內有效降雨之利用方法 8
2.5 水田入滲之研究 10
2.5.1 國外對於水田入滲之研究 10
2.5.2 國內對於水田入滲之研究 11
2.5.3 牛踏層之影響 12
2.5.4 埂間滲漏之影響 13
第三章 材料與方法 14
3.1 研究區域概述 14
3.1.1 含水層特性 14
3.1.2 濁水溪沖積扇水田面積分佈 16
3.1.3 降雨特性 17
3.2 水田灌溉制度 18
3.2.1 國內傳統灌溉制度制度 18
3.2.2 水稻強化栽培法 19
3.3 水田水收支平衡理論 19
3.4 FEMWATER模式介紹 21
3.4.1 地下水流控制方程式 22
3.4.2 初始條件 24
3.4.3 邊界條件 24
3.4.4 飽和及非飽和土壤特性 26
3.5 模式情境建置 28
3.5.1 土壤條件 28
3.5.2 網格建立 29
3.5.3 初始條件 32
3.5.4 邊界條件設定 33
3.5.5 作物蒸發散量推估 33
3.5.6 田間灌溉用水操作條件 36
3.5.1 灌溉期距 36
3.5.2 有效降雨推估 37
第四章 結果與討論 39
4.1 情境模擬結果 39
4.1.1 繼續灌溉模擬與模式驗證 39
4.1.2 輪流灌溉模擬結果 41
4.1.3 SRI模擬結果 43
4.1.4 田間容水量狀態模擬結果 46
4.1.5 底層土壤側滲分析 48
4.1.6 全期埂間滲漏量分析 52
4.2 補注量分析 55
4.3 田間灌溉用水量分析 57
4.4 綜合討論 58
第五章 結論與建議 67
5.1 結論 67
5.2 建議 68
參考文獻 69
論文參考文獻:1. Anan, M., Yuge, K., Nakano, Y., Saptomo, S., Haraguchi, T., "Quantification of the effect of rice paddy area changes on recharging groundwater," Paddy and Water Environment, vol. 5, 2007, pp.41-47.
2. Bouman, B.A.M., Peng, S., Castaneda, A.R., Visperas, R.M., "Yield and water use of irrigated tropical aerobic rice systems.," Agricultural Water Management, vol. 74, 2005, pp.87-105.
3. Bonkowski, M., "Protozoa and plant growth: the microbial loop in soil revisited.," New Phytologist, vol.162, 2004, pp.616-631.
4. Choe, J.D., Park, W.J., Park, K.P., Lim, K.J., "Feasibility of SRI methods for reduction of irrigation and NPS pollution in Korea," Paddy and Water Environment, vol. 11, 2013, pp.241-248.
5. Chapagain, T., Yamaji, E., "The effects of irrigation method, age of seedling and spacing on crop performance, productivity and water-wise rice production in Japan," Paddy and Water Environment, vol. 8, 2010,pp.81-90
6. Chen, S.K., Liu, C.W., Hwang, H.C., "Analysis of water movement in the paddy rice fields (II) numerical simulation," Journal of Hydrology, vol. 268, 2002a, pp.259-271.
7. Chen, S.K., Liu, C.W., "Analysis of water movement in the paddy rice fields(I) experimental study," Journal of Hydrology, vol. 260, 2002b, pp.206-215.
8. Carsel, R. F., Parrish, R. S., "Developing joint probability distributions of soil-water retention characteristics," Water Resources Research, vol. 24, no.5, 1998, pp.755-769.
9. Hameed, K.A., Jawad Mosa, A.K., Jaber, F.A., "Irrigation water reduction using System of Rice Intensification compared with conventional cultivation methods in Iraq.," Paddy and Water Environment, vol. 9, 2011, pp.121-127
10. Hafeez, M.M., Bouman, B.A.M., Van de Giesen, N., Vlek, P., "Scale effects on water use and water productivity in a rice-based irrigation system (UPRIIS) in the Philippines.," Agricultural Water Management, vol. 92, 2007, pp.81-89.
11. Huang, H.C., Liu, C.W., Chen, S.K., Chen, J.S., "Analysis of percolation and seepage through paddy bunds.," Journal of Hydrology, vol. 284, 2003, pp.13-25.
12. Hamada, H., Komae, T., "Analysis of recharge by paddy field irrigation using 222Rn concentration in groundwater as indicator.," Journal of Hydrology, vol. 205, 1998, pp.92-100.
13. Kim, T.C., Gim, U.S., Kim, J.S., Kim, D.S., "The multi-functionality of paddy farming in Korea," Paddy and Water Environment, vol.4, 2006, pp.169-179.
14. Kukal, S.S., Aggarwal, G.C., "Percolation losses of water in relation to puddling intensity and depth in a sandy loam rice (Oryza sativa) field.," Agricultural Water Management, vol. 57, 2002, pp.49-59.
15. Liu, C.W., Hung, H.C., Chen, S.K., Kuo, Y.M., "Subsurface eeturn flow and groundwater recharge of terrace fields in northern Taiwan," Journal of the American Water Resources Association, vol. 40, no. 3, 2004, pp.603-614.
16. Liu, C.W., Chen, S.K., Jou, S.W., Kuo, S.F., "Estimation of the infiltration rate of a paddy field in Yun-Lin, Taiwan," Agriculture Systems, vol. 68, 2001, pp.41-54.
17. Mishra, A., Salokhe, V.M., "Rice root growth and physiological responses to SRI water management and implications for crop productivity," Paddy and Water Environment, vol. 9, 2011, pp.45-52.
18. Menete, M.Z.L., van Es, H.M., Brito, R.M.L., DeGloria, S.D., Famba, S., "Evaluation of system of rice intensification (SRI) component practices and their synergies on salt-affected soils," Field Crops Research, vol. 109, 2008, pp.34-44.
19. Matsuno, Y., Nakamura, K., Masumoto, T., Matsui, H., Kato, T., Sato, Y., " Prospects for multifunctionality of paddy rice cultivation in Japan and other countries in monsoon Asia," Paddy and Water Environment, vol. 4, 2006, pp.189-197.
20. Moormann, F.R., Van Breemen, N., Rice: soil, water land., International Rice Research Institute, Los Banos, Philippines, 1978, pp.185.
21. Ndiiri, J.A., Mati, B.M., Home, P.G., Odongo, B., Uphoff, N., "Adoption, constraints and economic returns of paddy rice under the system of rice intensification in Mwea, Kenya," Agricultural Water Management, vol. 129, 2013, pp.44-55.
22. OECD, "Multifunctionality: a framework for policy analysis.," AGR/CA(98)9, Paris, 1998.
23. Painuli, D.K., Woodhead, T., Pagliai, M., "Effective use of energy and water in rice–soil puddling.," Soil and Tillage Research, vol. 12, 1988, pp.149-161.
24. Rupela, O.P., Wani, S.P., Kranthi, M., Humayun, P., Satyanarayana, A., Goud, V., Gujja, B., Punnarao, P., Shashibhushan, V., Raju, D.J., Reddy, P.L., "Comparing soil properties of farmers’ fields growing rice by SRI and conventional methods. In: 1st National SRI Symposium,” Worldwide Fund for Nature-ICRISAT, Patancheru, Hyderabad, 2006, pp.17-18.
25. Singha, A., Krause, P., Panda, S.N., Flugel, W.A., "Rising water table: A threat to sustainable agriculture in an irrigated semi-arid region of Haryana, India," Agricultural Water Management, vol.97, 2010, pp.1443-1451.
26. Stoop, W.A., Uphoff, N., Kassam, A., "A review of agricultural research issues raised by the system of rice intensification (SRI) from Madagascar: opportunities for improving farm systems forresource-poor farmers," Agricultural Systems, vol. 71, 2002, pp.249-274.
27. Sharma, P.K. and De Datta, S.K., "Effects of puddling on soil physical properties and processes.," Soil Physics and Rice, Los Banos, Philippines, 1985, pp.337-357.
28. Tan, X., Shao, D., Liu, H., "Simulating soil water regime in lowland paddy fields under different water managements using HYDRUS-1D," Agricultural Water Management, vol. 132, 2014, pp.69-78.
29. Tsubo, M., Fukai, S., Tuong, T.P., Ouk, M., "A water balance model for rainfed lowland rice fields emphasising lateral water movement within a toposequence.," Ecological Modelling, vol. 204, 2007, pp.503-515.
30. Ting, C.S., Tsou, I. and Lu, J.H.,"A study on the estimation of groundwater recharge by agriculture irrigation," Irrigation and Drainage, vol. 54, 2005, pp.339-351.
31. Tuong, T.P., Wopereis, M.C.S., Marquez, J.A., Kropff, M.J., "Mechanisms and control of percolation losses in irrigated puddled rice fields.," Soil Science Society of America Journal, vol. 58, 1994, pp.1794-1803.
32. Takagi, S., "Analysis of the vertical downward flow of water through a two-layered soil.," Soil Science, vol. 90, 1960, pp.98-103.
33. Uphoff, N., Randriamiharisoa, R., "Reducing water use in irrigated rice production with the Madagascar System of Rice Intensification (SRI). In: Bouman BA, Hengsdijk H, Hardy B, Bindraban PS, Thuong TP, Ladha JK (eds)," Water-wise rice production International Rice Research Institute, Los Banos, 2002.
34. van Genuchten, M. T., "A closed-form equation for predicting the hydraulic conductivity of unsaturated soils," Soil Science Society of America, vol. 44, 1980, pp.892-898.
35. Wopereis, M.C.S., Bouman, B.A.M., Kropff, M.J., Ten Berge, H.F.M., Tuong, T.P., "Water use efficiency of flooded rice fields. (II) Percolation and seepage losses.," Agricultural Water Management, vol. 26, 1994b, pp.291-304.
36. Wopereis, M.C.S., Bouman, B.A.M., Kropff, M.J., Ten Berge, H.F.M., Maligaya, A.R., "Water-use efficiency of flooded rice fields. I. Validation of the soil–water balance model SAWAH.," Agricultural Water Management, vol. 26, 1994a, pp.277-289.
37. Wopereis, M.C.S., Wosten, J.H.M., Bouma J., Woodhead, T., "Hydraulic resistance in puddled rice soils: measurement and effects on water movement.," Soil and Tillage Research, vol. 24, 1992, pp.199-209.
38. Walker, S.H., Rushton, K.R., "Water losses through the bunds of irrigated rice fields interpreted through an analogue model.," Agricultural Water Management, vol. 11, 1986, pp.59-73.
39. Yang, C, Yang, L, Ouyang, Z, "Organic carbon and fraction in paddy soil as affected by different nutrient and water regimes.," Geoderma, vol. 124, 2005, pp.133-142.
40. Yeh, G.T., Ward, D.S., FEMWAER: A finite element model of water flow through saturated-unsaturated porous media, Oak Ridge National Laboratory, 1980.
41. Zhang, Z.B., Zhou, H., Q.G., Zhao, Lin, H., Peng, X., "Characteristics of cracks in two paddy soils and their impacts on preferential flow," Geoderma, vol. 228-229, 2014, pp.114-121.
42. Zhao, L., Wu, L., Wu, M., Yongshan, Li, "Nutrient uptake and water use efficiency as affected by modified rice cultivation methods with reduced irrigation," Paddy and Water Environment, vol. 9, 2011, pp.25-32
43. Zhao, L., Wu, L., Li, Y., Animesh, S., Zhu, D., Uphoff, N., "Comparisons of yield, water use efficiency, and soil microbial biomass as affected by the system of rice intensification.," Communications in Soil Science and Plant Analysis, vol. 41, 2010, pp.1-12.
44. 中央氣象局,農業氣象觀測網旬資料(2013),http://www.cwb.gov.tw/V7/climate/agri/agri_10day.htm。
45. 中央氣象局,彰化氣象站逐日雨量資料(2004-2013),http://www.cwb.gov.tw/V7/climate/dailyPrecipitation/dP.htm。
46. 王雅惠,不同灌溉型態對水田有效雨量之影響分析,碩士論文,國立中興大學,臺中,2012。
47. 行政院農業委員會,農田水利業務簡介,第24-26頁。
48. 行政院農業委員會,農業統計年報,2000-2012。
49. 行政院農業委員會,農業統計年報,2000-2012。
50. 行政院農業委員會,灌溉排水營運管理第二版,2002。
51. 林子喬,不同灌溉制度對地下水補注之影響評估,碩士論文,國立臺北科技大學,臺北,2013。
52. 林達雄、楊明風、林克明,伍、水稻灌溉用水,農田水利教材,台北市七星農田水利研究發展基金會,農業工程研究中心編印,1998。
53. 張煜權、陳清田、謝儒震,2013,稻作強化體系應用於台灣之可行性研究,臺灣水利,第61卷,第2期,2013,第90-100頁。
54. 張格綸,應用蒸發皿係數推估地區蒸發散量之研究,碩士論文,國立成功大學,臺中,2008。
55. 許弘華,「農地重劃區規劃設計介紹」,地政電子報,第20期,2012。
56. 陳豐文、劉振宇,「水收支平衡應用於水田灌溉用水消耗特性之評估」,農業工程學報,第59卷,第1期,2013,第77-98頁。
57. 陳述、姚銘輝、陳守泓,「利用渦流相關系統量測水稻田蒸發散量及作物係數」,作物、環境與生物資訊,第59卷,2008,29-39 頁。
58. 陳世楷、劉振宇,「水田滲漏卅側滲之數值模擬」,農業工程學報,第46卷,第2期,2000,第1-23頁。
59. 陳文福、江崇榮,「濁水溪扇州及鄰近地區之沉積物分布與沉積環境」,經濟部中央地調所-地質,第18卷,第2期,1999。
60. 陳清田、邱一盛、劉景平,節水灌溉對水稻生產生態影響之研究(II),財團法人曹公農業水利研究發展基金會,1997。
61. 陳尚、李德滋,「以土壤水分當量推算水稻灌溉需水量之研究」,農業工程學報,第10卷,第4期,1964,第15-40頁。
62. 經濟部水利署,地下水觀測網, http://pc183.hy.ntu.edu.tw/index.php。
63. 鄒褘、葉一隆、王裕民,「休耕水稻田蓄水對地下水涵養補注之影響-以彰化田中休耕示範田為例」,第九屆水利工程研討會,1998,第G173-179頁。
64. 劉振宇、鄭世尉,「台灣地區水田對地下水補注量之推估及其經濟效益」,農業工程研討會,2005。
65. 謝儒震,現行稻作強化體系應用於臺灣之可行性研究,碩士論文,國立嘉義大學,2012。
66. 簡傳彬,水稻田入滲及回歸水之試驗及模擬,博士論文,國立中央大學,中壢,1999。
論文全文使用權限:同意授權於2016-09-03起公開