現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:水梯田入滲補注地下水之機制與量化研究-以貢寮地區為例 [以論文名稱查詢館藏系統]
論文英文名稱:Study on Groundwater Recharge Mechanisms and Amounts of Terraced Paddy Fields - Case of Gongliao District [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:102
出版年度:103
中文姓名:陳慣楹
英文姓名:Guan-Ying Chen
研究生學號:101428090
學位類別:碩士
語文別:中文
口試日期:2014-07-21
論文頁數:80
指導教授中文名:陳世楷
口試委員中文名:張煜權;張誠信;陳豐文
中文關鍵詞:水梯田地下水補注減水深入滲
英文關鍵詞:Terraced Paddy FieldGroundwater RechargeWater requirementInfiltration
論文中文摘要:為探討山區水梯田地下水補注功能及機制,本研究於新北市貢寮區之兩處水梯田(實驗田A為休耕後復育田,實驗田B為持續耕作之老田)進行相關試驗,並應用水收支法分析水梯田入滲補注地下水之機制。現地量測包括減水深、垂直入滲、土壤成分及土壤水分分佈等相關試驗,並探討耕種歷史、田埂維護情形、坵塊幾何條件等因子對水梯田入滲補注之影響性及量化水梯田補注功能。
實驗田A與實驗田B田區之淺層土壤在分類上均以砂質壤土為主,實驗田A田埂邊坡維護前平均田區整體入滲率113.37 mm/day,維護後為25.24mm/day,埂間滲漏/側滲約為垂直入滲率5~17倍,實驗田B田埂維護前平均田區整體入滲率9.02 mm/day ,維護後為9.96 mm/day,埂間滲漏/側滲約為垂直入滲率5~24倍。土壤水分飽和度分析結果顯示位於田埂內側交界處往下量測之飽和度幾乎皆為100%,高於田區內量測之數據,表示田區湛水易循田區內田埂內側邊界滲漏至深層土壤。影響入滲補注之因素方面,耕作歷史較短之水梯田有較高補注率,田埂邊坡之維護對於田區整體入滲率有極高影響性,而田埂坵塊邊界長度無相關性,田埂總邊界/面積比值相關性則受田埂維護影響。實驗田A及實驗田B之地下水年補注量保守估計分別為8,834mm及3,486mm,為當地年均降雨量5,146mm之171.7% 及67.7%,其補注效益皆遠較其他研究報告所指出之平地水田或坡地其他非湛水的土地利用顯著。此外,水梯田若能加強邊坡維護及提高田埂高度,則可進一步提高集水區涵養水源之功能。
論文英文摘要:Terraced paddy fields play an important role in water conservation in mountainous areas. Yet, detailed experimental data to confirm this function is missing, as well as an identification of the most decisive factors for groundwater recharge. The objective of this study was therefore to quantify groundwater recharge in terraced paddies both experimentally and by related water balance analysis. The in-situ measurements including water requirement rate, vertical infiltration rate, soil textures and soil moisture distribution of different soil layers were investigated in two experimental terraced paddy fields (experimental field A(FA) was re-cultivated after fallow for over 30 years, and experimental field B(FB) was cultivated continuously for over 100 years) on Gongliao District of New Taipei City. The factors about the history of farming, maintenance conditions of the bounds and geometry condition of the blocks impact on groundwater recharge of the terraced paddy fields were then discussed in this study.
The average field infiltration rates in FA before/after maintenance were 113.37, and 25.24 mm/day, respectively. The under-bound percolation rate was 5-17 times as high as vertical infiltration rate. In FB, The average field infiltration rates were 9.02 and 9.96 mm/day before/after maintenance, respectively. The under-bound percolation rate was 5-24 times higher than vertical infiltration rate. Soil moisture analysis showed that the saturations were near 100% at inside edge of the bounds, higher than the measurements at block center, indicating that ponding water trend to percolate through inside edge of the bounds to deep soil layer. Relatively short history of farming in terraced paddy field resulted in a higher recharge rate. Maintenance of the bounds also could be a significant factor on field infiltration rate, while the length of the block boundary showed no significant correlation with the field infiltration rate. The amount of groundwater recharge of FA and FB were estimated as 8,834 and 3,486mm/year, account for local average annual rainfall were 171.1% and 67.7%, respectively. Recharge benefits are far more significant than for lowland paddy fields or other land uses on slope with no ponding water recorded in other studies. Therefore, sustainable rice planting in the terraced paddies or maintenance of the water-storage capability in abandoned arable land is necessary to increase the water conservation function in watersheds.
論文目次:中文摘要 i
英文摘要 iii
誌謝 v
目錄 vi
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1前言 1
1.2研究目的 2
1.3論文架構與流程 3
第二章 文獻回顧 5
2.1水梯田入滲補注地下水相關文獻 5
2.2水梯田入滲機制相關文獻 7
2.2.1牛踏層形成/對入滲之影響 7
2.2.2埂間滲漏量化研究 7
2.2.3埂間滲漏機制研究 8
第三章 材料與方法 11
3.1實驗田區概述 11
3.2水梯田環境概述 14
3.2.1水梯田構築工程 14
3.2.2水稻田土壤分層剖面分析 15
3.3水梯田水文收支理論 17
3.3.1水稻梯田水文收支模式 17
3.3.2水梯田田區內垂直入滲與田埂垂直滲漏/側滲理論 19
3.3.3水梯田地下水流動模式 21
3.4我國現行水稻田灌溉方式 23
3.5現地實驗方法與步驟 24
3.5.1減水深試驗 24
3.5.2雙環定水頭入滲試驗 26
3.5.3現地土壤水分含量量測 27
3.5.4土壤分層成份調查 28
第四章 結果與討論 32
4.1貢寮地區水梯田現況調查 32
4.2水梯田土壤分層取樣及成分分析 36
4.3土壤水分飽和度分析 37
4.4水梯田入滲補注機制綜合分析 44
4.4.1田區垂直入滲及埂間滲漏/側滲比較分析 44
4.4.2水梯田耕作歷史對入滲補注之影響 54
4.4.3水梯田田埂維護情形對入滲補注之影響 54
4.4.4水梯田坵塊幾何條件對入滲補注之影響 60
4.4.5水梯田入滲補注地下水綜合分析 69
第五章 結論與建議 72
5.1結論 72
5.2建議 74
參考文獻 75
附錄 79
論文參考文獻:1. Bouman, B.A.M., Peng, S., Castaneda, A.R., Visperas, R.M., “Yield and water use of irrigated tropical aerobic rice systems.”, Agricultural Water Manage, 74, 2005,pp87-105.
2. Chen S. K. and Liu C. W., “Analysis of Water Movement in the Paddy Rice Fields, (I) Experimental Study.”, Journal of Hydrology, 260, 2002,pp206-215.
3. Chen S. K., Liu C. W. and Hwang H.C., “Analysis of Water Movement in the Paddy Rice Fields, (II) Numerical Simulation.”, Journal of Hydrology, 268, 2002, pp259-271.
4. Chen S. K., Liu C. W., and Chen Y. R. , “Assessing soil erosion in a terraced paddy field using experimental measurements and universal soil loss equation.”, Catena 95,2012,pp131-141.
5. Chen S. K. , Chen Y. R. , Peng Y. H. , “Experimental Study on Soil Erosion in Flooded Terraced Paddy Fields.”, Paddy Water Environ,2013a,11,pp433-444.
6. Liu C. W. , Huang H. C. , Chen S. K. , and Kuo Y. M. ,“Subsurface Return Flow and Groundwater Recharge of Terrace Fields in Northern Taiwan.”, Journal of the American Water Resources Association, No.03041, 2004, pp603-614.
7. Frank R. Moormann, N. van Breemen,Rice: soil, water, land,International Rice Research Institute, 1978.
8. Hafeez, M.M., Bouman, B.A.M., Van de Giesen, N., Vlek, P., ”Scale effects on water use and water productivity in a rice-based irrigation system (UPRIIS) in the Philippines.”, Agricultural Water Manage, 92, 2007,pp81-89.
9. Hamada, H., Komae, T., “Analysis of recharge by paddy field irrigation using 222Rn concentration in groundwater as indicator.”, Journal of Hydrol. 205, 1998,pp92-100.
10. Huang H.C. , Liu C.W. , Chen S.K. , Chen J.S. , “Analysis of percolation and seepage through paddy bunds.”, Journal of Hydrol. 284, 2003,pp13-25.
11. Janssen M., Lennartz B., “Horizontal and vertical water and solute fluxes in paddy rice fields.”, Soil Till. Res. 94, 2007,pp133-141.
12. Janssen M., Lennartz B.,“Water losses through paddy bunds: Methods, experimental data, and simulation studies.”, Journal of Hydrology, 2009,369, pp142-153

13. Kukal S.S., Aggarwal G.C., “Percolation losses of water in relation to puddling intensity and depth in a sandy loam rice (Oryza sativa) field.”, Agricultural Water Manage.,57, 2002,pp49-59.
14. Liang X. Q., Li H., Chen Y. X., He M. M., Tian G. M., Zhang Z. J., “Nitrogen loss through lateral seepage in near-trench paddy fields.”, Journal of Environmental Quality, 37, 2008, pp712-717.
15. Lin L.,Zhang Z., Manon J., Bernd L., “Infiltration properties of paddy fields under intermittent irrigation.”, Paddy Water Environ, 2013.
16. Liu C.W., Hung H.C., Chen S.K. , and Kuo Y.M., “Subsurface Return Flow and Groundwater Recharge of Terrace Fields in Northern Taiwan.”, Journal of the American Water Resources Association ,40(3), 2004,pp603-614.
17. Liu C. W., Chen S. K., Jou S. W., Kuo S. F., “Estimation of the infiltration rate of a paddy field in Yun-Lin.”, Taiwan,Agricultural Systems,Volume 68, Issue 1,2001, pp41-54.
18. Masayuki I., Satoshi I., Takeo T., “Long-term evaluation of the groundwater recharge function of paddy fields accompanying urbanization in the Nobi Plain, Japan.”, Paddy Water Environ,2006,4,pp251-263.
19. Odhiambo L. O., Murty V. V. N., “Modeling water balance components in relation to field layout in lowland paddy fields. I. Model development.”, Agricultural Water Manage, 30, 1996a,pp185-199.
20. Odhiambo L. O., Murty, V. V. N., “Modeling water balance components in relation to field layout in lowland paddy fields. II. Model application.”, Agricultural Water Manage. 30, 1996b,pp201-216.
21. Painuli D.K., Woodhead T., Pagliai M., “Effective use of energy and water in rice–soil puddling.”,Soil Till. Res. 12, 1988,pp149-161.
22. Reddi L. N., Seepage in Soils: Principles and Applications., New Jersey:John Wiley and Sons, Hoboken.
23. Sharma P. K. and De Datta S. K., “Puddling influence on soil, rice development and yield.”,Soil Science Society of America Journal, 1985,49,pp451-1457.
24. Tabuchi T., “Studies on drainage in clayey paddy fields: 8. A method of calculation of drainage and its fluctuations due to the precipitation.”, Transactions of the Japanese Society of Irrigation Drainage and Reclamation Engineers 25,1968,pp50-56 (Japanese with English summary).
25. Takagi S., “Analysis of the vertical downward flow of water through a two-layered soil.”, Soil Sci, 90, 1960,pp98-103.
26. Tsubo M., Fukai S., Tuong T. P., Ouk M.,“A water balance model for rainfed lowland rice fields emphasising lateral water movement within a toposequence.”, Ecol. Mod. 204, 2007,pp503-515.
27. Tuong T. P., Wopereis M. C. S., Marquez J. A., Kropff M. J., “Mechanisms and control of percolation losses in irrigated puddled rice fields.”, Soil Science Society of America Journal, 58, 1994,pp1794-1803.
28. Walker S. H., Rushton K. R., “Verification of lateral percolation losses from irrigated rice fields by a numerical model.”, J. Hydrol,1984,71, pp335-351.
29. Walker S. H., Rushton K. R., “Water losses through the bunds of irrigated rice fields interpreted through an analogue model. ” Agricultural Water Manage,11, 1986,pp59-73.
30. Wickham T. H., Singh V. P.,” Water movement through wet soils. In: Soils and Rice.”,International Rice Research Institute, Los Banos, Philippines, 1978, pp 337-357.
31. Wopereis M. C. S., Bouman, B. A. M., Kropff M. J., Tenberge H. F. M., Maligaya A. R., “Water-use efficiency of flooded rice fields. I. Validation of the soil–water balance model SAWAH.”, Agricultural Water Manage. 26,1994,pp277-289.
32. Zaslavsky D., “Theory of unsaturated flow into a non-uniform soil profile.”, Soil Science Society of America Journal., 97, 1964,pp400-410
33. 丁澈士等,農業灌溉用水對地下水補注影響之調查評估(I):水稻灌溉部份研究,財團法人曹公農業水利研究發展基金會,1997。
34. 永石義隆,農家にできる暗渠排水,農文協,1988,pp76~78(日文)。
35. 行政院主計處,中華民國統計資訊網,新北市統計年報資料,2012。
36. 行政院農業委員會,梯田對地下水涵養補注及水土保持之綜合評估,2004
37. 吳瑞賢,水稻田轉作之可逆性,推廣水田生態環境保護及地下水涵養補注,行政院農業委員會,2003。
38. 李光中,鄉村地景保育的新思維-里山倡議,台灣林業期刊,37卷,第3期,2011a,pp59-64。
39. 林壯沛、盧惠生,坡地栽植檳榔對水土流失之探討,行政院農業委員會林業試驗所-林業研究專訊-第2卷第3期,1995。
40. 施鈞程,台灣森林集水區之蒸發散量推估,碩士論文,國立中興大學水土保持學系,台中,2003。
41. 張格綸,應用蒸發皿係數推估地區蒸發散量之研究,碩士論文,國立成功大學資源工程學系,台南,2007。
42. 曹以松、林俊男等,集集共同引水計畫-人工補注技術及可行性實施計畫,財團法人農業工程研究中心研究報告,1987,pp52-99。
43. 陳尚,水稻田在水土資源保育上之功用與影響問題之研究,農業用水內部水量調整問題之研究,農業工程研究中心,1980,pp1101-1178。
44. 陳尚、李德滋,以土壤水分當量推算水稻灌溉需水量之研究,農工學報第10卷第4期,1964,pp15-40。
45. 須藤良太郎等,農用地之開發整備,山海堂,1980,pp108-109。
46. 鄒褘、葉一隆及王裕民,休耕水稻田蓄水對地下水涵養補注之影響-以彰化田中休耕示範田為例,第九屆水利工程研討會論文集,中壢,1998,pp173~179。
47. 劉振宇,水田對地下水涵養補注及水土保持之綜合評估,推廣水田生態環境保護及地下水涵養補注,行政院農業委員會,2003。
48. 蔡玉娟,「梯田保育意識與制度之建置-日本經驗之介紹」,2010年海峽兩岸土地學術研討會,國立政治大學綜合院館,2010。
49. 蔡明華,水田灌溉公益效能剖析研究,行政院農業委員會,1993。
50. 簡傳彬,水稻田入滲及回歸水之試驗及模擬,博士論文,國立中央大學,土木工程研究所,2003。
論文全文使用權限:同意授權於2016-09-03起公開