現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:應用碎形理論推估土壤表層之含水量 [以論文名稱查詢館藏系統]
論文英文名稱:Estimation of Surface Soil Moisture Using Fractal [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:102
出版年度:103
中文姓名:何竣璿
英文姓名:Chun-Hsuan He
研究生學號:101428066
學位類別:碩士
語文別:中文
口試日期:2014-07-17
論文頁數:72
指導教授中文名:陳彥璋
口試委員中文名:葉惠中;衛強;魏敏樺
中文關鍵詞:土壤含水量碎形理論盒子維度
英文關鍵詞:soil moisturefractal theorybox dimension
論文中文摘要:土壤含水量為地表蒸發的水文循環中一個重要的因子,其資訊可應用於許多領域,如進行水庫管理、乾旱預警系統、灌溉管理調度與作物產量預估等。而土壤含水量雖可於現地採樣計算,但需要專業的儀器與知識,且採樣僅能得知小面積的資訊,若要得知大面積的土壤含水量需要耗費大量的人力及物力,因較難實行。
土壤表面因乾燥而產生龜裂的現象常被用來描述土地乾旱的狀況,土壤龜裂現象與土壤含水量應有一定之關係,因此本研究以碎形理論(fractal theory)來解讀土壤龜裂所代表的土壤含水量。先以現地採樣的土壤經烘箱烘乾,利用重量法測土壤含水量,並採用盒子維度法(box dimension)將影像中土壤龜裂的裂痕量化成碎形維度(fractal dimension),對應其土壤含水量,建立碎形維度與土壤含水量的關係方程式,進而應用碎形理論的特性推估大面積的土壤含水量的情形。
本研究以石門水庫底泥為樣本建立碎形維度及土壤含水量率定方程式,並以不同溫度、厚度及土壤種類探討碎形維度的變化,實驗得知在不同溫度及土壤厚度太薄時皆會影響碎形維度變化,不同土壤種類因土壤特性不同使土壤表面龜裂的時間和龜裂裂痕數量有所差異,因此各種土壤的碎形維度-含水量率定方程式只限定該土壤使用。
論文英文摘要:The soil moisture content is a very important factor in the hydrological cycle of surface evaporation. Its information could be used in many fields, such as reservoir management, early drought warning systems, irrigation scheduling and management, and crop yield estimations. Although soil moisture content could be calculated with in situ sampling, but professional equipment and knowledge are needed and such sampling could only provide information for a small area. In order to obtain the soil moisture content for a large area, a lot of manpower and resources are needed and it is more difficult to implement.
Soil surface cracks due to dryness are phenomenon often used to describe drought conditions. Soil cracking phenomenon and moisture content have a certain relationship, so this study used the fractal theory to interpret the soil moisture content represented by soil cracks. The soil gathered in situ was dried with an oven first, then its soil moisture content was measured using the gravimetric method and the soil cracks in the image were quantized into fractal dimension using the box-counting dimension method, corresponding to its soil moisture. A relationship equation was established between fractal dimension and soil moisture content, so the fractal theory could be used to estimate the soil moisture content of large areas.
This study used sediment samples from the Shimen Reservoir to establish the fractal dimension and soil moisture content calibration equation and used different temperatures, thickness, and soil types to investigate fractal dimension changes. Experiment results showed that fractal dimension changes were affected by different temperatures and thin soil and different soil properties caused differences in the time required in generating surface cracks and the amount of cracks. Thus, the fractal dimension and soil moisture content calibration equation was limited to soil types.
論文目次:中文摘要 i
英文摘要 iii
誌謝 v
圖目錄 viii
表目錄 x
第一章 緒論 1
1.1 研究動機與目的 1
1.2 論文架構簡介 2
第二章 文獻回顧 4
2.1 推估含水量之方法 4
2.2推估含水量之相關研究 7
2.2.1國內研究 7
2.2.2國外研究 9
第三章 碎形理論 11
3.1 碎形理論的源起 11
3.2 碎形與非碎形 13
3.3 碎形的特性 15
3.3.1自相似性(self-similarity) 15
3.3.2尺度不變性(scale-invariant) 19
3.4 碎形維度 20
3.4.1 Hausdorff 維度 21
3.4.2自相似維度 (similarity dimension) 22
3.4.3 盒子維度 (box dimension) 22
3.4.4 等步進法(Strured Walk Method) 23
3.4.5 面積-周長法 24
第四章 研究材料與方法 25
4.1 試驗土壤來源地區簡介 25
4.2 土壤分類法 27
4.2.1 比重分析 30
4.2.2 土壤粒徑大小分析 30
4.2.3 阿太堡試驗分析 32
4.3 實驗方法與流程 34
4.3.1土壤採樣與分析 36
4.3.2 烘箱實驗 38
4.3.3 碎形維度分析 39
第五章 結果與討論 42
5.1 土壤種類分析結果 42
5.1.1 石門水庫底泥 42
5.1.2 貢寮田區土壤 46
5.2 土壤含水量與碎形維度之分析 49
5.2.1 變化因子:溫度 49
5.2.2 變化因子:實驗土壤厚度 61
5.2.3 變化因子:土壤種類 64
第六章 結論與建議 67
6.1 結論 67
6.2建議 68
參考文獻 69
論文參考文獻:1. Bouyoucos G. J., Mick A. H. , “An electrical resistance method for the continuous measurement of soil moisture under field conditions.”, Technical Bulletin. Michigan Agricultural Experiment Station, vol. 172, 1940, pp.88.
2. Bouyoucos G. J. ,“Nylon electrical resistance method for the continuous measurement of soil moisture in the field.” ,Soil Sci, vol. 67, 1949, pp. 319-330.
3. Benoit Mandelbrot, “How Long Is the Coast of Britain?Statistical Self-Similarity and Fractional Dimension”, Science, New Series, Vol. 156, No. 3775, 1967, pp. 636-638.
4. Burrough, P., “ Fractal dimensions of landscapes and other environmental data”, Nature, vol. 294, 1981,pp. 240-242.
5. Buczkowski, S., Hildgen, P. and Cartilier, L., “Measurements of fractal dimension by box-counting: a critical analysis of data scatter”, Physica A, vol. 252, 1988, pp.23-34.
6. Batty, M., P. A. Longley, Fractal Cities : A Geometry of Form andFunction , San Diego , Academic Press, 1994.
7. Croney, D., J. D. Coleman, and E. W. H. Currer. "The electrical resistance method of measuring soil moisture." British Journal of Applied Physics vol. 2, 1951, pp. 85.
8. Cheng, Y. C., Lee, P. J. and Lee, T. Y., “Self-similarity dimensions of the Taiwan Island landscape”, Computer and Geosciences, vol. 25, 1999, pp. 1043-1050.
9. Carl Bovill, Fractal Geometry in Architecture and Design, Berlin, Springer Science & Business Media, 1996, pp. 24-35.
10. Dubois, P., van Zyl, J. J. and Engman, T., “Measuring Soil Moisture with Imaging Radars”, IEEE Transactions on Geoscience and Remote Sensing, vol. 33, 1995, pp. 915-926.
11. D.A. Robinson, C.M.K. Gardner, and J.D.Cooper, “Measurement of relative permittivity in sandy soils using TDR, capacitance and theta probes: comparison, including the effects of bulk soil electrical conductivity”, Journal of Hydrology, vol. 223, 1999, pp. 198-211.
12. Evett, S. R., J. A. Tolk, and T. A. Howell. "A depth control stand for improved accuracy with the neutron probe." Vadose Zone Journal, vol.2, 2003, pp. 642-649.
13. Fung, A. K., Li, Z. and Chen, K. S., “Backscattering from a Randomly Rough Dielectric Surface”, IEEE Transactions on Geoscience and Remote Sensing, vol. 30, 1992, pp. 356-369.
14. Mandelbrot, B.B. "Statistical Methodology for Nonperiodic Cycles from Covariance to R/S Analysis," Annals of Economic and Social Measurement, vol. 1, 1972, pp. 259-290.
15. Mandelbrot, B. B., The fractal geometry of nature, New York: W. H. Freeman, 1982 .
16. M. Th. van Genuchten, “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils”, Soil Sci. Soc. Am. J., Vol 44, 1980, pp. 892–898.
17. Njoku, E. G., Entekhabi, D., “Passive microwave remote sensing of soil moisture”, Journal of Hydrology, vol. 184,1996, pp.101–129.
18. Sabey, Burns R., and D. D. Johnson. "Effect of soil moisture tension on nitrate accumulation in Drummer silty clay loam." Soil Science Society of America Journal , vol. 35, 1971, pp. 848-850.
19. Shen, G., “Fractal dimension and fractal growth of urbanized areas”, International Journal of Geographical Information Science, vol. 16, 2002, pp. 419-437.
20. Topp, G. C., Davis, J. L., Annan, A. P., “Electromagnetic determination of soil water content: Measurements in coaxial transmission lines”, Water Resources Research, vol. 16, 1980, pp. 574-582.
21. Terzaghi, K. and Peck, R. B., “Soil Mechanics in Engineering Practice”, 2nd edition, John Wiley & Sons, Inc., New York, 1967.
22. W. Sierpinski, Sur une courbe dont tout point est un point de ramification, C.R. Acad. Sci. Paris, vol. 160 , 1915, pp. 302‐305.
23. Wang, Peng-jui, and WANG, Ru-Yih. "A generalized width function of fractal river network for the calculation of hydrologic responses." Fractals, vol. 10, no2 , 2002, pp. 157-171.
24. Yu. V. Egorova, A. V. Kirichenkoa, A. V. Bobkova, and V. I. Galitskiib, “Averaged Assessment of the Soil Moisture by MediumFrequency Dielcometry “, Eurasian Soil Science - EURASIAN SOIL SCI , vol. 43, no. 2, 2010, pp. 187-193.
25. 王素芬,地理資訊系統和碎形維度於森林地景空間變化上之應用,碩士論文,國立台灣大學,台北,1997。
26. 中興工程顧問股份有限公司,石門水庫淤泥多元化處置方案評估規劃綜合報告,桃園,經濟部水利署北區水資源局,2008。
27. 李宗仰 ,地文水文時空變化之碎形結構及其應用,博士論文,國立成功大學水利,台南,1995。
28. 呂慧穎,都市化對景觀碎裂影響的碎形分析,碩士論文,國立台灣大學,台北,2001。
29. 沈茂松,實用土壤力學試驗,台北,文笙書局股份有限公司,2010,第144-202頁。
30. 林如珍,以準碎形空間混合度指標探討都市土地使用型態的自我組織-整體空間發展受限模式之應用,碩士論文,國立中興大學,台中,1998。
31. 林淑真,碎形與渾沌在非線性水文系統之解析與預報,博士論文,國立成功大學,台南,1998。
32. 林柏航,應用碎形分析河川棲地分佈之時空特性,碩士論文,國立中央大學,桃園,2004。
33. 林宜徵,應用MODIS衛星資料推估地表土壤含水量,碩士論文,國立中央大學,桃園,2011。
34. 林宜宏,含水量對砂土電磁特性之影響研究,碩士論文,國立成功大學,台南,2013。
35. 馬愛生、劉思春、呂家瓏、權定國、郭文龍、趙懿,「黃土高原地區幾種土壤的水分狀況與能量水平」,西北農林科技大學學報,第33卷,第11期,2005,第117-120頁。
36. 袁培堯,利用MODIS 與AMSR-E 衛星資料推估地表土壤含水量,碩士論文,國立中央大學,桃園,2012。
37. 張濟忠,分形,北京,清華大學出版社有限公司,1995,第1-89頁。
38. 張敏德、黃裕益、盛中德,「電阻式土壤水分感測器之研究」,農林學報,51(1),2002,第15-27頁。
39. 陳怡雯,土壤保水曲線與水旱田田間需水量之研究,碩士論文,立德管理學院,台南,2004。
40. 陳錕山,衛星遙測台灣地區土壤含水量與降雨量之研究,中央氣象局計畫,國立中央大學,桃園,2009
41. 黃建綸,平緩海灘表層含水量變化特性研究,碩士論文,國立中央大學,桃園,2013。
42. 萬鑫森,基礎土壤物理學,台北,茂昌圖書有限公司,1987,第138-142頁。
43. 詹振雄,以碎形幾何理論模擬與分析都市成長模式之研究,碩士論文,國立成功大學,台南,2000。
44. 楊弘倫,時域反射儀應用於土壤含水量及地下水監測技術,碩士論文,國立中央大學,桃園,2004。
45. 鄭光炎、陳水龍,土壤力學實驗,台北,臺灣東華書局股份有限公司,2008,第1-32頁。
論文全文使用權限:同意授權於2019-09-03起公開