現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:考慮鋼筋局部挫曲之三維鋼筋混凝土撓曲構件數值分析 [以論文名稱查詢館藏系統]
論文英文名稱:Numerical Analysis of Three-Dimension Reinforced Concrete Flexural Members Consider the Local Buckling [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:102
出版年度:103
中文姓名:蕭政倫
英文姓名:Cheng-Lun Hsiao
研究生學號:100428014
學位類別:碩士
語文別:中文
口試日期:2014-07-29
論文頁數:100
指導教授中文名:黃昭勳
指導教授英文名:Chao-Hsun Huang
口試委員中文名:蕭輔沛;王仲宇
口試委員英文名:Fu-Pei Hsiao;Chung-Yue Wang
中文關鍵詞:變軸力纖維斷面分析方法曲率面積法包絡線
英文關鍵詞:the interaction of axial force and bending momentfiber section analysis method(FSAM)curvature-area Analysis method(CAAM)envelope
論文中文摘要:本文研究目的主要是以纖維斷面分析方法(Fiber-Section Analysis Method),來考慮變軸力與雙軸彎矩互制下的行為。並且提出一個鋼筋的循環應力-應變關係的制定和驗證,鋼筋循環迴圈模型主要是遵循Giuffre-Menegotto-Pinto的方程式做一些修改並考慮到屈曲的影響,然後通過方程式組合,獲得一個完整的路徑依賴循環組成模型,提出的模型可以合理的預測鋼筋包括屈曲後的循環行為。本文以C++程式語言撰寫纖維斷面構件分析程式,並結合迭代的方法,迭代主要採用牛頓-瑞福生法(Newton-Raphson method)進行,進而加入混凝土與鋼筋的應力-應變模型,去比對鋼筋混凝土柱試驗作為驗證程式的正確性,並且加入曲率面積法推算出側力與位移以求得構件之撓曲變形。本文研究之成果,將可提供國內學界與工程界用來模擬分析鋼筋混凝土構件撓曲破壞行為之參考依據。
論文英文摘要:In this paper, the purpose of study is developed to the procedure of Fiber-Section Analysis Method (FSAM) for considered the interaction of axial force and bending moment. And propose a reinforcement of cyclic stress-strain relationship developed and validated, reinforced circulation loop model is mainly follow Giuffre-Menegotto-pinto equation to make some changes and consider the impact of flexion, and then through a combination of the equation, to get a complete cycle consistion of path dependence model, the proposed model can reasonably predict the behavior of reinforced cycle including buckling. In this paper, the programming language C ++ written fiber section components analysis program, And the method combines iterative Newton-Raphson method, and adding concrete and reinforced stress-strain model, to compare the test as reinforced concrete columns to verify the correctness of the program, and calculate the curvature area method in order to achieve lateral force and displacement components of deflection. In the future, this study will be adapt to simulate numerical simulations on the flexure behavior of reinforced concrete members.
論文目次:中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.3 論文組織與架構 4
第二章 鋼筋與混凝土材料模型介紹 6
2.1 鋼筋單軸單調曲線 6
2.1.1 鋼筋拉力包絡線模型 6
2.1.2 鋼筋壓力包絡線模型 9
2.1.3 計算挫屈長度 13
2.1.4 混凝土保護層剝落 14
2.1.5 網格尺寸的一致性 15
2.2 鋼筋單軸循環迴圈 16
2.2.1 Giuffre–Menegotto–Pinto 模型 16
2.2.2 模型參數 17
2.2.3 勁度在拉力區與壓力區的計算 18
2.2.4 修正後的Giuffre-Menegotto-Pinto模型 21
2.2.5 鋼筋受反覆載重之應力應變模型曲線 22
2.2.6 建議鋼筋的遲滯迴圈模型流程 25
2.2.7 理想彈塑性鋼筋模型 31
2.2.8 Mirza與MacGregor鋼筋模型 32
2.3 混凝土受壓之應力-應變關係 33
2.3.1 Park與Kent非圍束模式 34
2.3.2 Park與Kent圍束模式 35
2.3.3 Mander及Priestley與Park圍束模式 37
2.3.4 Mander非圍束模式 43
第三章 鋼筋混凝土三維纖維斷面與撓度分析 46
3.1 曲率面積法之撓曲分析 46
3.1.1 懸臂構件撓曲變形計算 47
3.2 變軸力分析構想 50
3.3 纖維斷面切割方法 50
3.4 混凝土單元面積之截面剛度推導 52
3.5 鋼筋對於截面的勁度推導 55
3.6 內力與變形關係 57
3.7 牛頓-瑞福生法(Newton-Raphson method) 58
3.8 程序編制流程 59
3.9 塑性旋轉角長度 62
第四章 實驗與數值算例驗證 64
4.1 斷面彎矩-曲率之驗證 64
4.1.1 Response-2000程式簡介 64
4.1.2 矩形鋼筋混凝土斷面分析之驗證 65
4.2 構件撓曲變形之驗證 69
4.2.1 懸臂構件撓曲變形之驗證 69
4.3 Giuffre–Menegotto–Pinto模型之驗證 71
4.3.1 驗證Mander建議的鋼筋平均壓應力與應變包絡線 71
4.3.2 驗證建議的迴圈模型 72
4.4 矩形鋼筋混凝土非韌性柱試驗 78
4.5 柱的雙向撓曲變形數值模擬分析 86
第五章 結論與建議 95
5.1 結論 95
5.2 建議 96
參考文獻 97
論文參考文獻:1. 台北縣土城市柱剪力破 http://www.ncree.org.tw/eq0331/tucheng-1.htm 。
2. 黃行松,「鋼筋混凝土柱在低週期反覆及子結構擬動力試驗下的性能研究」,重慶大學建築碩士論文,1993。
3. Murat Saatcioglu,“Reinforced concrete column subjected to uniaxial and biaxial load reversals,”Proc.Of the Eighth WCEE, Vol. VI, 1984。
4. 郭子雄,呂西林,「高軸壓比框架柱抗震性能實驗研究」,隼橋大學學報(自然科學版),Vol. 120,No. 3, Jul.,1999。
5. T. Takayanagi., W. C. Schnobrich., “Computed behavior of reinforced concrete coupled shear wall,” Civil Engineering Studies, Studies, Structural Reaearch Series No. 434, University of Illnois at Urvana-Champaign, Urbana,Illinois, Dec.,1976.
6. M. Saatcioglu, A. T. Derecho, “Dynamic inelastic response of coupled wall as effected by axial force,” SM Study No. 14, University of Waterloo, Ontario, Canada, PP.639-670,1980.
7. Mander JB, Priestley MJN, Park R. Seismic design of bridge piers. In: Research Report 84-2. Christchurch (New Zealand):Department of Civil Engineering, University of Canterbury,1984.
8. Dodd LL, Restrepo-Posada JI. Model for predicting cyclic behavior of reinforcing steel. J Struct Eng, ASCE 1995;121:433–45.
9. Balan TA, Filippou FC, Popov EP. Hysteretic model of ordinary and high-strength reinforcing steel. J Struct Eng, ASCE 1998;124:288–97.
10. Scribner CF. Reinforcement buckling in reinforced concrete flexural members. ACI J 1986;83:966–73.
11. Papia M, Russo G, Zingone G. Instability of longitudinal bars in RC columns. J Struct Eng, ASCE 1988;114:445–61.
12. Mau ST, El-Mabsout M. Inelastic buckling of reinforcing bars.J Eng Mech, ASCE 1989;115:1–17.
13. Mau ST. Effect of tie spacing on inelastic buckling of reinforcing bars. ACI Struct J 1990;87:671–8.
14. Watson S, Zahn FA, Park R. Confining reinforcement for concrete columns. J Struct Eng, ASCE 1994;120:1798–823.
15. Pantazopoulou SJ. Detailing for reinforcement stability in RC members. J Struct Eng, ASCE 1998;124:623–32.
16. Suda K, Murayama Y, Ichinomiya T, Shimbo H. Buckling behavior of longitudinal reinforcing bars in concrete column subjected to reverse lateral loading. In: Proceedings of the 11th World Conference on Earthquake Engineering 1996 [CD-ROM].Paper no. 1753.
17. Monti G, Nuti C. Nonlinear cyclic behavior of reinforcing bars including buckling. J Struct Eng, ASCE 1992;118:3268–84.
18. Rodriguez ME, Botero JC, Villa J. Cyclic stress–strain behavior of reinforcing steel including effect of buckling. J Struct Eng,ASCE 1999;125:605–12.
19. Dhakal RP, Maekawa K. Modeling for post-yield buckling of reinforcement. J Struct Eng, ASCE (in press).
20. Menegotto M, Pinto PE. Method of analysis of cyclically loaded RC plane frames including changes in geometry and non-elastic behavior of elements under normal force and bending. Preliminary Report IABSE 1973;13:15–22.
21. Kato B. Mechanical properties of steel under load cycles idealizing seismic actions. In: Bulletin D’Information No. 131. AICAPCEB Symposium on Structural Concrete Under Severe Seismic Actions, Rome. CEB, Rome. 1979. p. 7–27.
22. Claeson C, Gylltoft K. Slender high-strength concrete columns subjected to eccentric loading. J Struct Eng, ASCE 1998;124:233–40.
23. Rajesh Prasad Dhakal, Koichi Maekawa. Path-dependent cyclic stress–strain relationship of reinforcing bar including buckling. Engineering Structures 24 (2002) 1383–1396.
24. CEB. RC elements under cyclic loading—state of the art report.London: Thomas Telford, 1996.
25. Bauschinger J. Variations in the elastic limit of iron and steel [summarized translation from Mittheilungen aus dem Mechanischen Technischen Laboratorium der k. Hochschule in Mu ‥nchen]. J Iron Steel Inst 1887;1:442–4.
26. Kent D. C., and Park R., “Flexural Members with Concreted Concrete,” Journal of the Structural Division, ASCE, Vol. 97, No. 7, pp. 1969-1990, 1971.
27. Mander J. B., Priestley M. J. N., and Park R., “Theoretical Stress-Strain Model for Confined Concrete,” Journal of Structural Division, ASCE, Vol. 114, No. 8, pp. 1804-1826, 1988.
28. Wang Y. C., and Restrepo J. I., “Investigation of Concentrically Loaded Reinforced Concrete Columns Confined with Glass Fiber-Reinforced Polymer Jackets,” ACI Structural Journal, Vol. 98, No. 3, pp. 377-385, 2001.
29. Chai Y. H., “Steel Jacketing of Circular Reinforced Concrete Bridge Columns for Enhanced Flexural Performance,” PhD Thesis, University of California, 1991.
30. Colery W.G,“Rotational capacity of reinforced concrete beams,”Journal of the Structural Division,ASCE,Vol.92,ST5,October 1966,pp.121-146.
31. Priestley M.J.N.,“Displacement-based seismic assessment of reinforced concrete buildings,”Journal of Earthquake Engineering,Vol.1,No. 1(1997) 157-192.
32. Yong Lu,“Probability analysis of RC member deformation limits for different performance levels and reliability of their deterministic calculations,”Structural Safety 26,pp. 367-389, January 2004.
.33. Bentz E. C., and Collins M. P., “Response-2000 Reinforced Concrete Sectional Analysis Using the Modified Compression Field Theory,” Department of Civil Engineering University of Toronto, 2000.
34. Kawashima K, Unjou S, Nagashima H, Iida H, Mukai H. An experimental study on seismic resistance and seismic performance of RC piers subjected to eccentric loading. Tech. Memo.PWRI Tsukuba 1995;3319.
35. M.A1.Saadeghvziri, “Nonlinear response and modeling of RC columns subjected to varying axial load”,Engineering Structures. Vol.19,No.6,1997.
36. Xinrong Li. Reingorced Concrete Colunms Under Seismic Lateral Force and Varying Axial Load. PhD Thesis. University of Canterbury. October, 1994.
37. 楊智斌,「新城國中校舍實尺寸柱構件之耐震測試研究」,國立台灣科技大學營建工程學系碩士論文,民國九十四年七月。
38. 吳志軒,「FRP貼布混凝土構件之數值模擬分析」,中原大學土木工程學系碩士論文,民國九十七年七月。
論文全文使用權限:同意授權於2019-09-03起公開