現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:FRP錨碇型版樁擋土牆之研究 [以論文名稱查詢館藏系統]
論文英文名稱:A Study of Anchored Fiber Reinforced Plastics Sheet Pile [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:102
出版年度:103
中文姓名:陳敬凱
英文姓名:Ching-Kai Chen
研究生學號:101428021
學位類別:碩士
語文別:中文
口試日期:2014-06-29
論文頁數:112
指導教授中文名:李有豐
指導教授英文名:Yeou-Fong LI
口試委員中文名:陳水龍;陳清泉;徐增興
口試委員英文名:Shong-Loong Chen;Ching-Churn Chen;Tseng-Hsing Hsu
中文關鍵詞:FRP錨碇版樁邊坡護岸有限元素法
英文關鍵詞:FRPAnchored sheet pileSlope revetmentFinite element method
論文中文摘要:國內大多為將金屬材料應用於地工結構,然金屬在岸邊易生鏽、有強度降低及安全性堪慮之虞,為提升地工結構之安全性,以達到保護護岸邊坡以避免遭河水淘刷與土體滑移等目的。本研究採具高強度、質輕、耐候性佳之 纖維強化高分子複合材料(Fiber Reinforced Plastics, FRP)應用於版樁擋土牆,並進行力學試驗與分析。針對FRP版樁實尺寸構件進行三點抗彎實驗,並改變其跨度觀察其勁度之變化,輔以有限元軟體ANSYS分析其受力行為,並將實驗結果回饋至模型中。再針對不同厚度、版樁角度,進行單位面積勁度效益比之探討,提出其最經濟之版樁斷面形式建議。實驗結果發現深跨度18以上之FRP版樁接近尤拉梁(Euler beam)公式,而模型與各跨度分析結果誤差皆在8.5 %以內,故其數值模型具一定準確性;FRP版樁之最佳斷面分析中,在夾角45°、60°、90°等三種角度中以60°之FRP版樁最為經濟,另外在厚度6.35 mm、12.70 mm、與19.05 mm,三者以19.05 mm最為經濟。再將其版樁進行現地環境有限元軟體PLAXIS分析,分別打設FRP、PVC與鋼版裝,據PLAXIS有限元軟體分析結果,可發現三者中勁度最佳之鋼版裝位移量最小、安全係數最大;而PVC版樁勁度最小,其位移量最大、安全係數最小。還將FRP懸臂式版樁與FRP錨碇式版樁做一比較,可發現FRP錨碇式版樁較FRP懸臂式版樁安全係數大1.9以上,有效提升其邊坡護岸之安全性。
論文英文摘要:Metallic materials are usually used in the geotechnical engineering; however, metallic materials would cause corrosion if they submerge or contact water and sometimes cause the damage of the geotechnical structures. FRP (Fiber Reinforced Plastics) composite materials have the merits of light weight, high strength, well-durability and other characteristics. In this study, FRP sheet piles were used to solve the corrosion problem of the geotechnical structures. First, the 3-point bending experiment was performed, and changing the span depth ration to obtain the specimen’s stiffness. Then, using the result of the experiment to feedback the finite element analysis model. In addition, changing the numerical model’s angle and thickness to investigate the stiffness and stiffness over cross section area. Finally, the specimen of 18-span depth ration whose displacement is more approach to Euler’s Beam theory from the experimental observation, and the error of numerical model’s result is less about 8.5 %. It’s prove that the analysis is almost exact. According to the numerical FRP sheet pile model, the 60°-angle FRP sheet pile is most economical betwwen 45°, 60° and 90°. Furthermore, the thickness of the 19.05 mm FRP sheet pile is more economical than the thickness of the 6.35 mm and 12.70 mm FRP sheet piles. Then, three kinds of sheet piles (FRP, PVC and steel) were modeled using Plaxis. We found that the PVC sheet pile has the lowest stiffness which causes its deflection concerns and a very low safety factor. On the other hand, the steel sheet pile enjoys the highest stiffness, lowest deflection and consequently, the largest safety factor. Furthermore, in order to improve the safety of the slope of the embankment, this study compares results of the the cantilever with the anchored FRP sheet pile. According to the results, the safety factor of the anchored FRP sheet pile is higher than cantilever one by 1.9 folds.
論文目次:中文摘要 i
英文摘要 iii
致 謝 v
目 錄 vi
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 1
1.3 研究目的及內容 5
第二章 文獻回顧 7
2.1 相關研究 7
2.2 FRP材料版樁案例 24
第三章 FRP材料介紹與研究方法 29
3.1 FRP材料介紹與特性 29
3.1.1 FRP材料特性介紹 30
3.1.2 FRP材料構件生產與製造 34
3.1.3 GFRP材料版樁生產與製造 36
3.2 研究方法 38
3.2.1 FRP 版樁三點抗彎實驗 39
3.2.2 FRP版樁以有限元軟體分析 39
3.2.3 以有限元軟體分析FRP版樁於現地環境之情況 41
第四章 實驗規劃與實驗結果 43
4.1 FRP版樁試片實驗 43
4.1.1 GFRP 版樁試片實驗規劃 44
4.1.2 GFRP 版樁試片實驗結果 45
4.2 FRP版樁實尺寸實驗 46
4.2.1 GFRP 版樁實尺寸三點抗彎實驗規劃 47
4.2.2 GFRP 版樁實尺寸三點抗彎實驗結果 50
4.3 小結 60
第五章 有限元素分析 62
5.1有限元素基本理論 62
5.2有限元素分析 67
5.2.1 元素種類 67
5.2.2 FRP版樁建模 67
5.2.3 收斂性分析 69
5.2.4 分析結果與實驗之比較 70
5.3 最佳版樁斷面分析 71
5.3.1 不同角度之分析結果 72
5.3.2 不同厚度之分析結果 74
第六章 現地環境數值分析模擬 77
6.1 工程現地環境地質介紹 77
6.2 有限元素模擬分析 81
6.2.1懸臂式版樁擋土牆分析 82
6.2.2 錨碇式版樁擋土牆分析 99
第七章 結論與建議 107
7.1 結論 107
7.2 建議 108
參考文獻 109
論文參考文獻:1. Cowper, G. R. “Journal of Applied Mechanics,” June, p.p. 335 (1996).
2. Davalos, J. F., Chen, Y. and Ray, I. “Effect of FRP Bar Degradation on Interface Bond with High Strength Concrete,” Cement and Concrete Composites, Vol. 30(8), pp. 722-730 (2008).
3. Giroux, C. and Shao, Y. “Flexural and Shear Rigidity of Composite Sheet Piles,” Journal of Composites for Construction, Vol. 7, pp. 348-355 (2003).
4. Guadagnini, M., Pilakoutas, K., and Waldron, P. “Shear Resistance of FRP RC Beams: Experimental Study,” Journal of Composites for Construction, Vol. 10(6), pp. 464-473 (2006).
5. Gautam, B. P. and Matsumoto, T. “Shear Deformation and Interface Behavior of Concrete-Filled CFRP Box Beams,” Composite Structures, Vol. 89(1), pp. 20-27 (2009).
6. Giosue, B., Toby, M. and Salvatore, R. “Dynamic Response of a Sheet Pile of Fiber-Reinforced Polymer for Waterfront Barriers,” Journal of Composites for Construction, Vol. 15(6), pp. 974-984 (2011).
7. Linzell, D. G. and Boothby, T. E. “Flexural Strength of FRP Sheet Piling Panels under Simulated Surface Loads,” Proceedings of the 4th International Conference on Advanced Composite Materials in Bridges and Structures.,pp.171-178 (2004).
8. Li, Y.-F. and Sung, Y.-Y. “A Study on the Shear-Failure Circular Sectioned Bridge Column Retrofitted by Using CFRP Jacketing,” Journal of Reinforced Plastics and Composites, Vol. 23, No. 8, pp. 811-830 (2004).
9. Li, Y.-F., and Kan, S.-T. “A Study on the Three-Point Bending Test and Mechanical Behavior of the Hybrid FRP Beam.” 2011 ICFMEIA, Indonesia (2011).
10. Liden M. “Ground Vibrations due to Vibratory Sheet Pile Driving,” MS Thesis, Royal Institute of Technology, Stockholm (2012).
11. Mazzotti, C., Savoia, M. and Ferracuti, B. “A New Single-Shear Set-up for Stable Debonding of FRP–Concrete Joints,” Construction and Building Materials, Vol. 23(4), pp. 1529-1537 (2009).
12. Oehlers, D. J. and Mohamed Ali, M. S. “FRP Composites in Civil Engineering,” Hong Kong: Elsevier, pp. 563-570 (2001).
13. Rizzo, A. and Lorenzis, L. D. “Modeling of Debonding Failure for RC Beams Strengthened in Shear with NSM FRP Reinforcement,” Construction and Building Materials, Vol. 23, No. 4, pp. 1568-1577 (2009).
14. Steenfelt J.S. and Hansen, B. “Sheet Pile Design Earth Pressure for Strip Load,” No. 110, p.p. 976-986 (1984).
15. Shao, Y. and Kouadio, S. “Durability of Fiberglass Composite Sheet Piles in Water,” Journal of Composisites for Construction, Vol. 6, pp. 280-287 (2002).
16. Shao, Y. and Shanmugam, J. “Moment Capacities and Deflection Limits of PFRP,” Journal of Composites for Construction, Vol. 10(6), pp. 520-528 (2002).
17. Shao, Y. and Shanmugam, J. “Deflection Creep of Pultruded Composite Sheet Piling.” Journal of Composites for Construction, Vol. 8(5), pp. 471-479 (2004).
18. Shao, Y. “Characterization of a Pultruded FRP Sheet Pile for Waterfront Retaining Structures,” Journal of Materials in Civil Engineering, Vol. 18, pp. 626-623 (2006).
19. Shao, Y. and Shanmugam, J. “Moment Capacities and Deflection Limits of PFRP Sheet Piles,” Journal of Composites for Construction, Vol. 10(6), pp. 520-528 (2006).
20. Tan, Y. and Paikowsky, S. G. “Performance of Sheet Pile Wall in Peat,” Journal of Geotechnical and Geoenvironmental Engineering, No. 134, pp. 445-458 (2008).
21. Wegian, F. M., and Abdalla, H. A. “Shear Capacity of Concrete Beams Reinforced with Fiber Reinforced Polymers,” Composite Structures, Vol. 71(1), pp. 130-138 (2005).
22. Won, J. P., Park, C. G., Kim, H.H., Lee, S.W. and Jang, C. I. “Effect of Fibers on the Bonds between FRP Reinforcing Bars and High-Strength Concrete,” Composites: Part B, Vol. 39(5), pp. 747-755 (2008).
23. 羅國軒,纖維棒應用於梁構件力學行為與耐久性之研究,碩士論文,國立台北科技大學土木與防災研究所,台北(2007)。
24. 蔡澤瀛,不同背拉型式地錨對倘土板樁力學行為之探討,碩士論文,國立中興大學,台中(2012)。
25. 王怡仁,懸臂式與錨碇式擋土版樁力學行為之探討,碩士論文,國立中興大學,台中(2012)。
26. 林至聰、李有豐、洪明中、羅國軒,FRP棒應用於土木工程之耐久性實驗與探討,第九屆結構工程研討會論文集,高雄(2008)。
27. 李有豐、徐增興、程如君,利用有限元素法分析碳纖維棒於混凝土中之握裹實驗,第十屆海峽兩岸破壞科學研討會,屏東(2010)。
28. 李有豐、徐增興、甘淑婷,混編纖維複合梁構件之三點抗彎實驗及力學行為探討,中華民國力學學會第三十五屆全國力學會議,國立成功大學(2011)。
29. 李有豐,FRP複合材料於土木與建築工程之應用,台灣區複合材料工業同業公會,台北(2012)。
30. 林毓瑛、李有豐、徐增興,組合式纖維複合構件梁-版系統力學行為之研究,中華民國力學學會第三十六屆全國力學會議,國立中央大學(2012)。
31. 陳彥鈞、李有豐、徐增興,纖玻璃纖維強化高分子複合材料I型梁-版系統力學行為之研,2012海峽兩岸功能複合材料論壇,台北(2012)。
32. Christensen, R.M., Mechanics of Composite Materials, Shie-Cheng Bookstore, Tainan, pp.50-52(1980).
33. 林建中,高分子材料科學:高分子材料機械性質,台北(1999)。
34. http://www.thb.gov.tw/TM/Menus/Menu09/main0901/download/921/34/3409-2.pdf
35. http://www.thb.gov.tw/TM/Menus/Menu09/main0901/download/921/34/3408-1.pdf
36. http://hill.yenyang.com/pics.aspx
37. http://www.freeway.gov.tw/UserFiles/990712-%E5%9C%8B%E9%81%933%E8%99%9F3.1%E5%85%AC%E9%87%8C%E5%B4%A9%E5%A1%8C%E4%BA%8B%E4%BB%B6%E6%A1%88%E4%BE%8B(%E4%BF%AE).pdf
38. http://www.quakewrap.com/frp%20papers/Structural-Characteristics-Of-Concrete-Filled-Glass-Fiber-Reinforced-Composite-Piles.pdf
39. http://www.gulfsynthetics.com/
40. http://www.gulfsynthetics.com//media/pdfs-replace/Polaris%20SL%201580%20Projects.pdf
41. http://www.sireg.it/en/geotechnics/products/carbopree/
論文全文使用權限:同意授權於2019-09-03起公開