現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:營建工程感電重大職災危害情境分析與防災研究 [以論文名稱查詢館藏系統]
論文英文名稱:Scenario Analysis and Prevention of Construction Related Electrical Shock Harzards [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:工程學院工程科技博士班
畢業學年度:103
畢業學期:第二學期
出版年度:104
中文姓名:郭聰明
英文姓名:Kuo Tsung-Min
研究生學號:99679006
學位類別:博士
語文別:中文
口試日期:2015/05/11
指導教授中文名:林利國
口試委員中文名:陳維東;李清吟;張寬勇;曾惠斌
中文關鍵詞:感電重大職災危害類型卡方自動互動檢視法感電情境路徑圖
英文關鍵詞:Occupational Electrical Shock HazardAccident PatternCHAIDEletrical Shock Scenario Path
論文中文摘要:台灣營造業職業災害一向高居各產業之冠,而感電重大職災又高居營造業職業災害類型中的第二位,僅次於墜落。本研究分析台灣於2000至2013年間160件營造業重大感電職災具有明確資料之120件案例,將各案例依特性區分為八種危害類型,再應用卡方自動互動檢視法(Chi-Square Automatic Interaction Detector;簡稱為CHAID)找到致災因素之分析結果,針對分析結果運用關聯圖解釋錯綜複雜之關係,並據以建構出感電情境路徑圖以便能提供管理者從中構思及執行有效的防災對策,藉以阻斷感電職災危害路徑的發生原因,進而促使勞工能免於發生感電之意外事故。
本研究經統計及分析此120件感電死亡之重大災例得知,就發生時間,上午9:00至10:00及下午4:00至5:00為發生災害之高峰期;9AM至10AM計發生15件,佔全部120件災例之12.5%;而4PM至5PM則共計發生20件,佔全部120件災例之16.7%。另若就日期及季節為分析變數,分析後之結果則發現星期一及星期五為一周七日中之致災高峰期,因此就尋求災害之防治對策而言,將時間與日期交叉比對,確實須針對上班後及下班前;以及放假後與放假前之易致災時段,加強防災教育與避災意識的提醒;尤其是周一之9AM至10AM時段與周五之4PM至5PM時段更是二個高致災潛勢期(Potential hazard period)的重疊區間;故相關之災害主管機關應強制性規範此二區間要有具體的防災教育作為。
此外,本研究對每一個案件進行分類並應用CHAID分析各項要素間之因果關係,分析出第一關鍵因素(媒介物)與第二關鍵因素(感電發生原因),並將CHAID分析之結果結合運用而繪製出感電職災因果關聯圖,使能更清楚表達至災因子之關聯與因果性;本研究共計推導出八種感電危害類型與十一種感電情境路徑,藉由感電情境路徑圖可以清楚得知此等死亡受害者致災之所以致災之感電原因,相關管理者可從中規劃並執行預防措施,以有效提升勞工生命安全之保障。
論文英文摘要:Taiwan’s construction industry has consistently ranked highest in the total number of occupational hazards occured, with electrical shock being the second leading cause of injuries and fatalities after falls. This study looks at a total of 160 construction-related electrical shock incidents and selects 120 cases based on observable reporting measures from the period of 2000 to 2013, and divides them into eight different accident patterns. The study applies the Chi-squared Automatic Interaction Detection (CHAID) technique to detect various predictive factors to the observed outcomes. The result from CHAID analysis is used to construct the electrical accident scenario path that is combined with path analysis and Reliability Block Diagram (RBD) to provide a real life illustration of the accident scenario.
The study tabulated and analyzed 120 cases of electric shock accidents, and found that accidents occur with significant intermittence for the time periods between 9:00 AM – 10:00 AM (with a total of 15 such cases, representing 12.5% of all incidents) and 4:00 PM – 5:00 PM (with a total of 20 such cases, representing 16.7% of all incidents). Further analysis based on day of week and seasonality revealed Monday and Friday to be the peak in the occurrence of incidents. Inattentiveness of workers due to the weekend-priming effect, coupled with a more relaxed atmosphere before and after the workday may be considered as psychological bases underlying this phenomenon. In order for preventative measures to be effective, special attention is needed in regards to the time periods close to the weekends, as well as the beginnings and ends of the workday. Where overlaps may occur, particularly for the high-risk intervals for potential hazard that were discussed (9:00 AM – 10:00 AM, 4:00 PM – 5:00 PM, Monday and Friday), authorities in charge of disaster-prevention should employ strict guidelines and additional training targeted to the prevention of such incidents.
This study classifies each case and apply CHAID analysis of the casual relationship between the elements to derive the number one factor (vehicle) and number two factor(Cause of electrical shock) to construct the electrical accident scenario path in helping to create preventive measures and intercepting the flow of electricity leading up to the shock.
論文目次:摘 要 i
ABSTRACT iii
誌 謝 v
目 錄 vii
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1 研究背景與動機 1
1.1.1 研究背景 1
1.1.2 研究動機 1
1.2 研究目的 2
1.3 研究範圍與限制 3
1.3.1 研究範圍 3
1.3.2 研究限制 4
1.4 研究架構 5
第二章 文獻回顧 6
2.1營造業之定義與工程特性 6
2.1.1營造業之定義 6
2.1.2營建工程特性 7
2.2職業災害與重大職業災害 8
2.3職業災害分析模式探討 9
2.4卡方自動互動檢視法 11
2.5卡方自動互動檢視法之屬性及類別 12
2.5.1電壓 12
2.5.2月份日期時間 13
2.5.2.1月份 13
2.5.2.2日期 13
2.5.2.3時間 14
2.5.3作業別 15
2.5.4媒介物 17
2.5.5感電發生原因 18
2.5.6危害類型 20
2.6關聯圖 23
2.7路徑圖分析 25
第三章 研究方法 27
3.1 篩選之屬性與類別定義 29
3.2 卡方自動互動檢視法分析 34
3.3 關聯圖分析 37
3.4 建構路徑流程圖分析 38
第四章 案例分析與探討 40
4.1 月份日期時間與感電職災之影響 40
4.1.1月份與感電職災之影響 40
4.1.2日期與感電職災之影響 43
4.1.3時間與感電職災之影響 45
4.1.4日期時間重疊時與感電職災之影響 47
4.2電壓與感電職災之影響 50
4.3卡方自動互動檢視法分析結果 51
4.4關聯圖法分析數據結果 52
4.5建構感電情境路徑圖之分析結果 53
4.5.1 危害類型一:勞工直接碰觸高壓電線 57
4.5.2 危害類型二:旋臂車輛碰觸高壓電線 58
4.5.3 危害類型三:勞工持導電性材料碰觸高壓電線 59
4.5.4 危害類型四:勞工直接碰觸低壓帶電設備 61
4.5.5 危害類型五:勞工持導電性材料碰觸低壓帶電設備 64
4.5.6 危害類型六:勞工直接碰觸漏電或損壞低壓帶電設備 65
4.5.7 危害類型七:勞工持導電性材料碰觸漏電或損壞低壓帶電設備 67
4.5.8 危害類型八:勞工在工作梯上碰觸漏電或損壞低壓帶電設備 68
4.6感電情境路徑圖分析結論 69
4.7防災對策 71
第五章 結論與建議 73
5.1 研究結論 73
5.2 後續研究建議 75
參考文獻 76
附錄
附錄A 160件案例摘要 81
附錄B 卡方自動互動檢視法之屬性編列 89
論文參考文獻:[1] Amin,M,Amin,S.,Ali,M.(2009) Monitoring of Leakage Current For Composite Insulator and Electrical Devices. Review of Advance Material Science 21,75-89.
[2] Batra, P. E. & Loannides, M. G. (2002) Assessment of electric accidents in power industry. Human factors and ergonomics in manufacturing, vol. 12 (2): 151-169.
[3] Buskin, S.E. and Paulozzi, L.J. (1987) Fatal injures in the construction industry in Washington State. American Journal of Industrial Medicine 11, 453-460.
[4] Casini, V. J.(1993) “Occupational electrocutions: Investigation and prevention”, Professional Safety, Jan,34-39.
[5] Casini, J. V., (1998) Overview of electrical hazards. In worker deaths by electrocution: a summary of NIOSH surveillance and investigation findings. U. S. National Institute for Occcpational Safety and Health.
[6] Cattledge, G.H., Schneiderman, A., Stanevich, R., Hendricks, S. and Greenwood, J. (1996) Nonfatal occupational fall injuries in the west Virginia construction industry. Accid. Anal. and Prev. 28, 655-663.
[7] Cawley, J.C., and Homce, G. T. (2003) Occupational electrical injuries in the United States, 1992-1998, and recommendations for safety research, Journal of Safety Research, Vol 34, 241-248.
[8] Chi , C.-F. and Wu, M.-L. (1997)"Effects of age and occupation on occupational fatality rates", Safety Science. 27, 1-17.
[9] Chi , Chia-Fen and Chen, Chin-Lung (2003) Reanalyzing occupational fatality injuries in Taiwan with a model free approach, Safety Science. 41, 681-700.
[10] Chi, C.-F., Chang, T.-C., Hung, K.-H. (2004) Significant industry-sourse of injury-accident type for occupational fatalities in Taiwan. International Journal of Industrial Ergonomics, 34, 77-91.
[11] Chi, Chia-Fen, Chang, Tin-Chang and Hsin-I Ting (2005) Accident Patterns and Prevention Measures for Fatal Occupational Falls in the Construction Industry, Applied Ergonomics. 36 391-400.
[12] Chi , C.-F., Yang, C.-C., Chen, Z.-L. (2009) In-depth Accident Analysis of Electrical Fatalities in The Construction Industry. International Journal of Industrial Ergonomics 39,635-644.
[13] Drury, C. G. & Brill, M. (1983) Human Factors in Consumer Product Accident Investigation. Human Factors. 25(3),329-342.
[14] Harvey-Sutton, P. L., Driscoll, T. R., Frommer, M. S. & Harrison, J. E.(1992) Work-related electrical fatalities in Australia, 1982-1984, Scandinavian Journal Of Work Environemntal Health, 18, 293-297.
[15] Homce, G.T., Cawley, J.C. (2002) An Alarm to Warn of Overhead Power Line Contact by Mobile Equipment. National Institute for Occupational Safety and Health. Pittsburgh, PA.
[16] Janicak, C.A. (1997) Occupational fatalities caused by contact with overhead power lines in the construction industry. J Occup Environ Med 39, 328–332.
[17] Jones, E.J., Armstrong, W.C., Woolard, C.D., Miller, B.G., (1991) Fatal occupational electrical injuries in Virginia, Journal of Occupational Medicine, Vol.33, No. 1, 57-63.
[18] Kass,G.V.(1975) Significance testing in and some extensions of automatic interaction detector. Unpublished Ph.D. dissertation. University of Witwatersrand, South Africa.
[19] Kincaid, H.W., (1997) Ten common electrical killers, Occupational Hazards, Jun., 73-74.
[20] Kisner, S., Casini, V. (1998) Epidemiology of electrocution fatalities in Worker Death by Electrocution: a summary of NIOSH surveillance and investigative findings. National Institute for Occupational Safety and Health. Cincinnati, OH, 9–19.
[21] Koustellis, J.D., Anagnostatos, S.D., Halevidis, C.D., Karagrigorious, F.S., Polykrati, A.D., Bourkas, P.D. (2011) Contact of heavy vehicles with overhead power lines. Safety Science 49, 951-955.
[22] Masters,GM.(2004) Renewable and Efficient Electric Power Systems. ISBN0-471-28060-7.John Wiley & Sons,Inc.
[23] McCann, M., Hunting, K. L., Murawski, J., Chowdhury, R., and Welch, L., (2003) “Causes of electrical deaths and injuries among construction workers”, American journal of industrial medicine, Vol 43, 398–406.
[24] Occupational Safety and Health Administration (2002) Controlling Electrical Hazards. US Department of Labor. Occupational Safety and Health Administration.
[25] Ore, T. and Casini, V. (1996) Electrical fatalities among U.S. construction workers. Journal of Occupational and Environmental Medicine, Vol.38, No.6, 587-592.
[26] Paques, J.-J. (1993) Crane accidents by contact with power lines. Safety Science 16, 129–142.
[27] Pineault, M., Rossignol, M. and Barr,R.G. (1994) Inter-rater analysis of a classification scheme of occupational fatalities by electrocution, Journal of Safety Research, 25(2), 107-115.
[28] Rossignol M., Pineault M. (1994) Classification of fatal occupational electrocutions. Can J Public Health 85, 322–325.
[29] Suruda, A. & Smith, L. (1982) Work-related electrocution involving portable power tools and appliances, Journal of Occupational Medicine, Vol 34. No 9, 27-32.
[30] Suruda, A.(1988)Electrocution at work. Professional Safety,July,27-32.
[31] Suruda, A., Liu, D., Egger, M., Lillquist, D. (1999) Fatal injuries in the United States construction industry involving cranes 1984-1994. Journal of Occupational and Environmental Medicine, 41, 1052-1058.
[32] U.S. Department of Labor, Occupational Safety and Health Administration. (2002) OSHA 3075: Controlling electrical hazards.
[33] U.S. National Institute for Occupational Safety and Health (2002) Electrical safety: safety and health for electrical trades-student manual.
[34] Williamson, A and Feyer, A. M (1998) The cause of electrical fatalities at work, Journal of Safety Research,.Vol. 29 No. 3.pp. 187-196.
[35] 中央氣象局,氣候統計資訊,http://www.cwb.gov.tw。
[36] 紀佳芬,「應用群集分析與文字採礦探討感電職災的情境與預防策略」行政院國家科學委員會專題研究成果報告,2007。
[37] 日本中央勞動災害防止協會,安全衛生年鑑,1999,第336-338頁。
[38] 朱文勇,營造重大職災因果之研究,碩士論文,國立台灣大學土木工程學研究所,台北,2005。
[39] 吳柏毅,營造業重大職業災害事故制止點之研究,碩士論文,國立台北科技大學土木與防災碩士班,台北,2006。
[40] 吳啟瑞,「移動式起重機誤觸架空高壓電線感電事故之防止對策研究」,勞工安全衛生研究季刊,第四卷,第二期,1996,第47-60頁。
[41] 林利國,營建工程管理實務,台北:國立台北科技大學,2012,第0-1,1-6,2-16頁。
[42] 林楨中,用模糊理論及影響圖於營造業重大災害風險之量化評估,博士論文,國立台灣科技大學營建工程系,台北,2010。
[43] 林淵源,營造業感電死亡職災之事故類型,博士論文,國立台灣科技大學管理研究所,台北,2012。
[44] 夏平凌,製造業感電重大職災之情境分析,碩士論文,國立台灣科技大學工業管理系,台北,2007。
[45] 陳正倫,營造業感電職災之情境分析,碩士論文,國立台灣科技大學工業管理系,台北,2006。
[46] 張庭彰,重大職災暨營造業墜落職災之情境分析與預防措施,博士論文,國立台灣科技大學工業管理系,台北,2003。
[47] 張世宏,臺灣營造業重大職業災害防止對策之研究,碩士論文,國立台灣大學土木工程學研究所,台北,2013。
[48] 楊忠政,「固定式起重機與移動式起重機職業災害之比較」,起重升降月刊,第178期,2002,第21-28頁。
[49] 楊忠政,「起重機誤觸高壓電之探討」,起重升降月刊,第202期,2004第16-22頁。
[50] 楊忠政,「如何預防電焊機感電危害」,工業安全衛生月刊,第218期,2007,第29-35頁。
[51] 楊忠政,感電重大職業災害之致災因素,博士論文,國立台灣科技大學工業管理系,台北,2008。
[52] 劉國鎮,營建工程工安災害感電與墜落防止之研究,碩士論文,國立台灣科技大學營建工程系,台北,2006。
[53] 聞毅,應用卡方自動互動檢視法與路徑分析法探討營造業感電重大職災,碩士論文,國立台灣科技大學工業管理系,台北,2009。
[54] 廖珮晴,重大營建職災之致災原因及防災對策之探討,碩士論文,國立雲林科技大學營建工程系碩士班,雲林,2013。
[55] 鄭慶武,台灣營造業總體職災資料探勘及要因之研究,博士論文,國立台灣科技大學營建工程系,台北,2009。
[56] 盧昆宏,建築工地感電事故及其對策之探討,碩士論文,國立高雄第一科技大學環境與安全衛生工程所,高雄,2002。
[57] 蘇文源、杜偉民,「營造業工作場所感電災害分析與防止對策」,勞工安全衛生研究季刊,第三卷,第四期,1995,第105-116頁。
論文全文使用權限:不同意授權