現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:應用序率層級分析法於災害風險指標模式之權重評估 [以論文名稱查詢館藏系統]
論文英文名稱:Assessing the index weight in a disaster risk index model by employing the SAHP [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:103
畢業學期:第一學期
中文姓名:朱浩瀚
英文姓名:Hao-Han Chu
研究生學號:101428084
學位類別:碩士
語文別:中文
口試日期:2015/01/28
指導教授中文名:朱子偉
口試委員中文名:陳偉堯;謝龍生;張志新
中文關鍵詞:災害風險;層級分析法;序率層級分析法;不確定性分析;蒙地卡羅模擬;拉丁高階方塊取樣法;機率分布
英文關鍵詞:analytic hierarchy process (AHP); stochastic analytic hierarchy process (SAHP); uncertainty analysis; Latin hypercube sampling (LHS); Monte Carlo simulations (MCS); disaster risk; probability distribution
論文中文摘要:層級分析法(analytic hierarchy process, AHP)理論清晰且操作容易,複雜的評估因素透過AHP階層架構呈現,經專家評估及數學方法處理後,能以具體的數值表示各個因素的優先次序。然而,決策資訊不足或是決策者缺乏足夠經驗判斷時,往往難以評定兩兩要素間之相對重要性。為了改善上述模糊不清的判斷,本研究旨在導入序率概念(stochastic concept)以呈現要素評比時之不確定性,應用蒙地卡羅模擬(Monte Carlo simulations, MCS)結合拉丁高階方塊取樣法(Latin hypercube sampling, LHS)建立序率化之成對比較矩陣,最後再整合專家群體對各要素相對權重之共識。研究接者將此序率層級分析法(stochastic analytic hierarchy process, SAHP)應用於災害風險指標模式之指標權重評估,分析結果與傳統AHP比較顯示各評估指標權重值的差距減少且仍保有少數極端的意見,表示專家群體意見經SAHP法處理後,不僅改善不確定性的判斷並且同時兼納少數受訪者之意見。最後此風險模式應用於雙北市淹水及坡地易致災風險分析,結果顯示轄區內村里之淹水風險加權分數,以新莊區福基里變化最大,計增加111分,其次為樹林區圳民里有68分,接著為士林區富州里上升74分,總計有61%村里淹水風險有上升趨勢,其餘村里則以貢寮區仁里里下降56分為最大;各行政區之坡地聚落風險分數變化幅度相對較小,改變最大者為樹林區坡內里備內街149號聚落有29分,其次為三峽區五寮里五寮國小附近,計有28分,接者是瑞芳區九份夜未眠民宿旁有24分,總計有46%聚落風險加權分數有上升趨勢,另有31%聚落屬風險分數下降情形,最後23%聚落風險後維持不變。
研究最後總結以傳統AHP加入蒙地卡羅模擬,確能改善因素比較時權重衡量之不確定性,以獲得較客觀之權重評估,另外結合LHS更能大幅降低取樣次數,有效節省計算時間,更增加本研究SAHP之實際應用性。
論文英文摘要:The analytic hierarchy process (AHP) has proved to be a powerful multiple-criteria decision analysis to deal with complex problems, and its multi-disciplinary applications have been widely published. However, traditional AHP compels decision-makers to converge vague judgments to single numeric preferences in order to evaluate the pairwise comparisons of all pair of elements and reach the further decision alternatives. Therefore, this study, aiming to solve the abovementioned problem, proposes an innovative stochastic analytic hierarchy process (SAHP), which incorporates probability distributions and uncertainty in judgment. The constrained Monte Carlo simulations (MCS) based on Latin hypercube sampling (LHS) scheme was employed in this SAHP to establish the pairwise comparison matrix and eventually to evaluate the overall weight of each element. Moreover, the modified SAHP was applied to the combined index models for inundation and slop disaster risk assessments of disaster-prone villages in both Taipei and New Taipei cities. As a result, the differences of relative weights between indexes were decreased so that the proposed SAHP approach turned out to improve the judgment uncertainty from insufficient information. In addition, few extreme opinions in comparison were found to reflect group outlier. Finally, contrary to AHP approach, the results of risk score show that the disaster risk of 61% and 46% of villages has increased for inundation and slop disaster, respectively. Especially, Fuji Vil., Xinzhuang Dist. Gained most 111 point for inundation risk assessment. This study concludes that incorporation of MCS with traditional AHP lessens the uncertainty in the pairwise comparisons and assesses the relative significance of elements in a more objective way. Furthermore, the LHS scheme improves the sampling uniformity and significantly reduces sampling size so as to save a great amount of computing time. More importantly, the proposed SAHP enhances its applicability in various practices.
論文目次:中文摘要 i
應文摘要 iii
誌 謝 v
目 錄 vi
表目錄 ix
圖目錄 xi
第一章 緒論 1
1.1研究動機與目的 1
1.2研究架構及流程 2
第二章 文獻回顧 5
2.1多準則決策分析 5
2.2多屬性決策方法 6
2.3層級分析法 7
2.3.1層級分析法 7
2.3.2層級分析法的優點 8
2.3.3層級分析法的缺點 9
2.4修正層級分析法(Modified AHP) 10
2.4.1層級分析法之改善方法 10
2.4.2序率層級分析法(SAHP)之相關文獻 12
2.5不確定性分析 13
2.5.1不確定性分析研究方法 13
2.5.2不確定性分析相關研究 15
2.6災害風險(Disaster Risk) 16
第三章 研究方法 18
3.1序率層級分析法(SAHP) 18
3.2模式建構 28
3.2.1評估指標選取原則 29
3.2.2淹水災害評估指標與項目說明 30
3.2.3坡地災害評估指標與項目說明 31
3.2.4風險等級評估方法說明 32
3.3問卷設計 35
3.3.1問卷編製 35
3.3.2問卷發放對象 35
3.4研究區域 35
3.4.1臺北市、新北市水系 37
3.4.2大臺北地區颱洪災害 39
第四章 結果分析 41
4.1問卷資料分析 41
4.1.1受訪者對象 41
4.1.2問卷回收情形 41
4.2指標權重之層級分析結果 42
4.2.1層級分析法計算相對權重 42
4.2.2序率層級分析法計算相對權重 49
4.3結果與討論 60
4.3.1研究方法比較 60
4.3.2案例分析 67
4.3.3淹水風險等級評估結果 68
第五章 結論與建議 108
5.1結論 108
5.2未來研究建議 110
參考文獻 111
附錄A:專家意見評選表 117
附錄B:拉丁高階方塊取樣法運算結果 130
附錄C:LHS隨機配對結果 159
附錄D:AHP通過一致性檢定之成對比較矩陣 172
論文參考文獻:[1]Annan, K.A., “living with risk, a global review of disaster reduction initiatives”, International Strategy for Disaster Reduction (ISDR), United Nations, 2004.
[2]Altuzarra, A., Moreno-Jimenez, J.M., Salvador, M. Consensus building in AHP-group decision making: A Bayesian approach. Operations Research, Vol.58, No.6, 2010, pp.1755-1773.
[3]Buede, D.M. and Maxwell, D.T., Rank Disagreement: A Comparison of Multi-criteria Methodologies, Journal of Multi-Criteria Decision Analysis, Vol.4, No.1, 1995, pp.1-21.
[4]Banuelas, R. and Antony, J., Modified analytic hierarchy process to incorporate uncertainty and managerial aspects. International Journal of Production Research, Vol.42, No.18, 2004, pp.3851–3872.
[5]Buckly, J.J., Fuzzy hierarchical analysis. Fuzzy Set. Syst., Vol.17, No.3, 1985, pp.233-247.
[6]Chang, D.Y., Applications of the extent analysis method on fuzzy AHP. European Journal of Operation Research, Vol.95, No.3, 1996, pp.649-655.
[7]Coates, G. and Rahimifard, S., Modelling of post-fragmentation waste stream processing within UK shredder facilities. Waste Management, Vol.29, No.1, 2009, pp.44-53.
[8]France, C., Bojessen, M., Hougaad, J.L., Nielsen, K., A fuzzy approach to a multiple criteria and Geographical Information System for decision support on suitable locations for biogas plants. Applied Energy, Vol.140, 2015, pp.304-315.
[9]Huang, J., Huang, W., Wang, R., The analytic hierarchy process and its application to three gorges ship gates running. 25th Chinese Control Conference, Harbin, China, 2006, pp.589-592.
[10]Hwang, C.L. and Yoon, K., “Multiple Attribute Decision Making Methods and Applications: A State-of-the-Art Survey”, New York: Springer-Verlag, 1981.
[11]Hsu, T.H. and Pan, F.F.C., Application of Monte Carlo AHP in ranking dental quality attributes. Expert Systems with Applications, Vol.36, No.2, 2009, pp.2310-2316.
[12]Hauser, D. and Tadikamalla, P., The analysis hierarchy process in an uncertain environment: A simulation approach. European Journal of Operation Research, Vol.91, No.1, 1996, pp.27-37.
[13]Haines, L.M., A statistical approach to the analytic hierarchy process with interval judgments: distributions on feasible regions. Eur. J. Oper. Res., Vol.110, 1998, pp.112-125.
[14]Iman, R.L. and Helton, J.C., An investigation of uncertainty and sensitivity analysis techniques for computer models. Risk Analysis, Vol.8, No.1, 1988, pp.71-90.
[15]Jalao, E.R., Wu, T., Shunk, D., A stochastic AHP decision making methodology for imprecise preferences. Information Sciences, Vol.270, 2014, pp.192-203.
[16]Jablonsky, J., Measuring the efficiency of production units by AHP models. Math. Comput. Model., Vol.46, No.7-8, 2007, pp.1091-1098.
[17]Kwong, C.K. and Bai, H. A fuzzy AHP approach to the determination of importance weights of customer requirements in quality function deployment. Journal of Intelligent Manufacturing, Vol.13, 2002, pp.367-377.
[18]Kang, M. and Stam, A., PAHAP: A Pairwise Aggregated Hierarchical Analysis of Ratio-Scale Preferences, Decision Sciences, Vol.25, No.4, 1994, pp.607-624.
[19]Lake, R.J., Cressey, P.J., Campbell, D.M., and Oakley, E., Risk ranking for foodborne microbial hazards in New Zealand: Burden of disease estimates. Risk Analysis, Vol.30, No.5, 2010, pp.743-752.
[20]Lipovetsky, S. and Tishler, A., Interval estimation of priorities in the AHP. European Journal of Operational, Vol.114, No.1, 1999, pp.153-164.
[21]Liang, J., Chen, B., Zhang, B., Zheng, J., Monte Carlo Simulation-Aided Analytic Hierarchy Process Approach: Case Study of Assessing Preferred Non-Point-Source Pollution Control Best Management Practices. Journal of Environmental Engineering, Vol.139, No.5, 2013, pp.618-626.
[22]Mahapatra, M., Ramakrishnan, R., Rajawat, A.S., Coastal vulnerability assessment using analytical hierarchical process for South Gujarat coast, India. Natural Hazards, Vol.8, 2014, pp.1-21.
[23]Mikhailov, L., A fuzzy programming method for deriving priorities in the analytic hierarchy process. J. Oper. Res. Soc., Vol.51, 2000, pp.341-349.
[24]Mackay, M.D., Sensitivity and Uncertainty Analysis Using a Statistical Sample of Input Values. CRC Press, Boca Raton, FL, 1988, pp.145-186.
[25]Momani, A.M. and Ahmed, A.A., Material handling equipment selection using hybrid Monte Carlo simulation and analytic hierarchy process, World Academy of Science, Engineering and Technology, Vol.59, 2011, pp.953-958.
[26]Ramanathan, R. Stochastic decision making using multiplicative AHP. European Journal of Operational Research. Vol.91, No.3, 1997, pp.543-549.
[27]Rosenbloom, E.S., A probabilistic interpretation of the final ranking in AHP. European Journal of Operation Research, Vol.96, No.2, 1996, pp.371-378.
[28]Sadiq, M. and Sultana, S., A method for the selection of software testing techniques using analytic Hierarchy process. Smart Innovation Systems and Technologies. Vol.31, 2015, pp.213-220.
[29]Suliyanto, Novandari, W., Setyawati, S.M., Training program evaluation on batik micro small medium enterprises (MSMEs): An analytical hierarchy process(AHP) method. International Business Management. Vol.9, No.3, 2015, pp.251-257.
[30]Scott, M. “Quantifying certainty in design decisions: examining AHP”, In ASME DETC 2002 Design Engineering Technical Conferences, Design Theory and Methodology Conference(DTM), Montreal, Quebec, Canada, September 2002.
[31]Stam, A. and Silva, A., Stochastic judgments in the AHP: The measurement of rank reversal probabilities, Decision Sciences, Vol.28, No.3, 1997, pp.655-681.
[32]Saaty, T.L., “The Analytic Hierarchy Process”, New York: McGraw-Hill ,1980.
[33]Saaty, T.L., Fundamentals of decision making with the analytic hierarchy process, PA: RWS Publications, 1994.
[34]Smith, K., “Environmental Hazards: Assessing Risk and Reducing Disaster”, London: Taylor and Francis Group, 2001.
[35]Taziani, T.R., Sanei, M., Jahanshahloo, G.R., Jablonsky, J., and Mozaffari, M.R., Ranking bank branches with interval data by IAHP. International Journal of Mathematical Analysis, Vol.3, No.20, 2009, pp.971–983.
[36]Tiryaki, F. and Ahlatcioglu, B. Fuzzy portfolio selection using fuzzy analysis hierarchy process. Inf. Sci., Vol.179, No.1-2, 2009, pp.53-69.
[37]Wang, T.C. and Chen, Y.H. Applying fuzzy linguistic preference relation to the improvement of consistency of fuzzy AHP. Inf. Sci., Vol.178, 2008, pp.3755-3765.
[38]Wu, Z. and Pan, W. Application of gray evaluation model based on AHP in ATM system. Journal of electronics, Vol.25, No.3, 2008.
[39]Zeleny, M., Multiple Criteria Decision Making, New York: McGraw-Hill, 1982.
[40]王建武、王明德、張家祝,改良式分析階層程序法權重求解模式之研究,台大工程學刊,第九十二期,第11-27頁,2004。
[41]許桂溶,分析層級程序法成對比較基礎標度系統之研究,碩士論文,國立國防大學管理學院國防決策科學研究所,台北,2003。
[42]許富城,國際速食連鎖店選址之研究,碩士論文,國立臺北科技大學商業自動化與管理研究所,台北,2006。
[43]沈哲平,台北山坡地災損潛勢分析與歷史災害驗證,碩士論文,國立臺北科技大學土木與防災研究所,台北,2007。
[44]邱盈瑞,應用層級分析法探討台灣風力發電產業政策,碩士論文,交通大學管理學院碩士在職專班科技管理組,新竹,2009。
[45]李岳霖,氣候變遷下極端事件之淹水災害風險分析,碩士論文,國立臺北科技大學土木與防災研究所,台北,2012。
[46]吳逸寧,區間層級分析法之研究:採購航太業引擎扣件供應商重要因素分析,碩士論文,私立義守大學工業管理學系,高雄,2013。
[47]洪振創、蔡千姿,具回饋功能之模糊績效評估資料收集系統-在網際網路上之設計與應用,行政院國科會(NSC-89-2213-E-159-008),1997。
[48]徐培剛,台灣地區都市共同管道路網規劃決策模式之研究,碩士論文,國立臺北科技大學土木與防災研究所,台北,2005。
[49]郭欣怡,層級分析與模糊層級分析法於山坡地生態及災害綜合指標權重分析,碩士論文,國立臺北科技大學土木與防災研究所文,台北,2008。
[50]徐新景,運用AHP與TOPSIS發展研發中心績效評估模式與排序方法論,碩士論文,國立臺北科技大學工業工程與管理研究所,台北,2011。
[51]張巧蓉,多目標規劃與不確定性分析之結合--以地下水整治決策為例,碩士論文,國立臺灣大學環境工程學研究所,台北,2001。
[52]張銘仁,應用模糊層級分析法於軟體專案風險之研究,碩士論文,國立屏東科技大學工業管理研究所,屏東,2004。
[53]張倉榮、許銘熙等,脆弱度及風險地圖分析方法之研究,經濟部水利署,台北,2010。
[54]張添美,以分析層級法(AHP)及德菲法(Delphi Method)對頂尖業務人員關鍵人格特質之分析-以南山人壽為例,碩士論文,私立致理技術學院服務業經營管理研究所,新北市,2011。游伯龍,行為與決策:知己知彼的基礎與應用,中央研究院經濟研究所,台北,1985。
[55]黃博炫,淹水災害風險因子分析方法之研究-以蘭陽溪為例,碩士論文,國立臺北科技大學土木與防災研究所,台北,2011。
[56]葉文盛,運用模糊層級分析法於綠色供應商評選之研究,碩士論文,私立大葉大學工業工程與科技管理學系碩士在職專班,彰化,2007。
[57]鄧振源、曾國雄,層級分析法(AHP)的內涵特性與應用(上),中國統計學報,第二十七卷,第六期,第13707-13724頁,1989。
[58]鄧振源、曾國雄,層級分析法(AHP)的內涵特性與應用(下),中國統計學報,第二十七卷,第七期,第13767-13870頁,1989。
[59]鄭哲男,多屬性決策方法應用於多重代理人協商,碩士論文,國立中正大學電機工程研究所,嘉義,2005。
[60]顧志遠,多架構AHP模式建立之研究,管理與系統,第三卷,第二期,第217−232頁,1996。
論文全文使用權限:同意授權於2020-02-09起公開