現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:以投資人情緒指標預測台股期貨指數 [以論文名稱查詢館藏系統]
論文英文名稱:Forecasting Taiwan Futures Index(TAIFEX) by Investor Sentiment [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:管理學院
系所名稱:經營管理系碩士班
畢業學年度:101
出版年度:102
中文姓名:許雅婷
英文姓名:Ya-Ting Hsu
研究生學號:100578034
學位類別:碩士
語文別:中文
口試日期:2013-05-06
論文頁數:86
指導教授中文名:林鳳儀
指導教授英文名:Fengyi Lin
口試委員中文名:汪進揚;陳國樑
口試委員英文名:Jinn-Yang Uang;Guo-Liang Chen
中文關鍵詞:投資人情緒從眾行為倒傳遞類神經網路
英文關鍵詞:Investor SentimentBack propagation neural networkHerding Behavior
論文中文摘要:過去許多文獻指出投資者具有從眾心理,以及追漲殺跌的投資心態,所以投資人的情緒對於股市變化存在重大影響,其投資人情緒上揚,指數亦上漲;反之,投資人情緒下降,指數亦走跌,顯示投資人情緒的確會造成市場的衝擊,因而引發市場報酬的波動。除此之外,過去許多研究也常以迴歸模型檢定這些情緒指標對市場報酬的影響,但由於運用在迴歸模型之資料受限於必需服從古典五大假設,而運用於類神經網路之樣本資料並不受限於上述之假設,也無限制輸入變數是否具有共線性的問題,因此本研究使用倒傳遞類神經網路來學習投資人於現貨、期貨、選擇權的佈局,以預測台股期貨隔日的收盤指數。
本研究以台股期貨指數為研究對象,區分「全體市場投資人情緒指標」與「法人情緒指標」兩組模型,以倒傳遞類神經網路進行學習並預測台股期貨隔日之收盤指數。研究結果指出,投資人情緒指標可用來預測台股期貨指數;另外,於本研究模型中,「全體市場投資人情緒指標」在預測隔日台股期貨收盤指數較「法人情緒指標」準確。
論文英文摘要:Prior research shows investors have herding behavior and momentum strategy attitude. It shows that investors’ emotion will impact stock market and cause the fluctuation of market returns. Recent researches have examined how the emotional index influence on market returns, but found multi-collinearity among sample which indicate the relationship is nonlinear. This study predicts Taiwan Future Index closing price next day by using back propagation neural network to simulate investors' behaviors in stocks, futures and options operating.
We conduct both whole market investors’ sentiment and Institutional Investors’ sentiment as model variables. Back propagation neural network was utilized to predict Taiwan Future Index closing price next day. The result shows that we can predict Taiwan Future Index closing price by whole Investor’s Sentiment. Furthermore, whole market investors’ sentiment is more accurate than Institutional Investors’ Sentiment when predicting Taiwan Future Index closing.
論文目次:摘 要 i
ABSTRACT ii
誌 謝 iii
目 錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 6
1.3 研究流程 6
1.4 論文架構 8
第二章 文獻回顧 9
2.1 投資人行為 9
2.1.1 從眾行為(Herding behavior) 10
2.1.2 動能策略(Momentum) 11
2.2 投資人情緒與投資報酬之相關性 12
2.2.1 投資人情緒指標 13
2.3類神經網路(Neural Network) 18
2.3.1類神經網路的源起 18
2.3.2類神經網路發展的現況 20
2.3.3倒傳遞類神經網路簡介及實證 21
第三章 研究方法 24
3.1 實驗架構 24
3.2 資料來源與研究期間 25
3.2.1 資料來源 25
3.2.2 研究期間 26
3.3研究變數之選取 27
3.4倒傳遞類神經網路演算法 32
3.4.1 資料正規化 32
3.4.2倒傳遞類神經網路之參數設定 33
3.4.3演算法流程 36
3.5 交易策略的制定 37
3.6 績效評估之方法 39
3.7獨立樣本t檢定 41
3.8型Ⅰ誤差與型Ⅱ誤差 43
第四章 實證分析 44
4.1 敘述性統計 44
4.2實驗結果與分析 49
4.3 統計檢定 61
4.3.1準確率檢定 62
4.3.2平均獲利檢定 64
4.4型Ⅰ誤差與型Ⅱ誤差 66
第五章 結論與建議 77
5.1結論 77
5.2研究貢獻 78
5.3來研究建議 78
參考文獻 80
論文參考文獻:1. 李春安、羅進水、蘇永裕(2009),動能策略報酬、投資人情緒與景氣循環之研究,Journal of Financial Studies,第十四卷,第二期。
2. 周賓凰、張宇志、林美珍(2007),投資人情緒與股票報酬互動關係,證券市場發展季刊,第一卷,第二十期,1-39。
3. 林偉麒(2012),三大法人交易部位與波動率指數的互動關係之探討,碩士論文,世新大學,財務金融學研究所。
4. 林鈺綾(2010),三大法人選擇權與期貨未平倉量之研究,碩士論文,國立交通大學,資訊管理研究所。
5. 柏婉貞,黃柏農(2007),台股指數期貨與現貨市場日內報酬波動與交易量非線性行為之研究,經濟研究,第二卷,第四十三期,182-208。
6. 查欣瑜(2011),法人籌碼對台股未來走勢影響之研究,碩士論文,交通大學,財務金融研究所。
7. 倪衍森,黃寶玉,許宸銘(2011),影響大盤與衍生性金融商品成交量因素之探討與分析,創新與管理,第八卷,第一期,47-74。
8. 張斐章、張麗秋(2005),「類神經網路」,東華書局。
9. 許溪南,王健聰,黃文芳(2010),台灣股市三大法人買賣超型態、強度與報酬之關聯性,中華管理評論,第十三卷,第四期。
10. 郭玟秀,康信鴻 ,許溪南(2005),影響台股股價指數期貨交易量之決定因素,朝陽商管評論,第四卷,第一期,41-62。
11. 郭英哲(2004),應用倒傳遞類神經網路技術於臺灣指數期貨預測之研究,碩士論文,南台科技大學,資訊管理所。
12. 郭敏華(2009),如何測量投資人情緒?,Working Paper。未出版論文。
13. 陳彥碩(2011),外資現貨買賣超、期貨與選擇權多空交易與大盤指數之關係:台灣證券市場實證研究,碩士論文,政治大學金融研究所。
14. 葉怡成(2009),「類神經網路模式應用與實作」,儒林圖書。
15. 廖朝正(2009),期貨三大法人未平倉部位與加權指數互動關係之研究,碩士論文,銘傳大學,財務金融學系碩士在職專班。
16. 蔡佩蓉,王元章,張眾卓(2009),投資人情緒、公司特徵與台灣股票報酬之研究,經濟研究,第二卷,第四十五期,273-322。
17. 蔡瑞昌(2010),「應用多重類神經網路進行台灣指數期貨跨日走勢行為研究」,碩士論文,國立交通大學,資訊管理研究所。
18. 鐘任明、李維平,吳澤民(2007),運用文字探勘於日內股價漲跌趨勢預測之研究,中華管理評論,第十卷,第一期,1-30。
19. Baker, M., and Wurgler, J.(2006), “Investor Sentiment and the Cross-Section of Stock Returns”, The Journal of Finance, 61(4), pp. 1645-1680.
20. Bauman, W.S.(1967), “Scientific Investment Analysis: Science or Fiction?”, Financial Analysts Journal, 23(1), pp.93-97.
21. Burrell, O. K.,(1951), “Possibility of an Experimental Approach to Investment. Studies”, The Journal of Finance, 6, pp.211-219.
22. Caginalp, G., and DeSantis, M.(2011),“A Paradigm for Quantitative Behavioral Finance”, American Behavioral Scientist,55(8), pp. 1014-1034.
23. Chang, C.-Y.(2012), “Order imbalance and daily momentum investing: Evidence from Taiwan”, Financial Review, 47(4), pp.697-718.
24. Chang, C-C., Hsieh P-F., Lai H-N.(2009), “Do informed option investors predict stock returns? Evidence from the Taiwan stock exchange”, Journal of Banking & Finance, pp.757-764.
25. Claessens, S., Ariccia, G.D., Igan, D., and Laeven, L.(2010), “Cross-country experiences and policy implications from the global financial crisis”, Economic Policy,25(62),pp.267-293.
26. Deo, M., and Srinivasan, K.(2011), “Determining The Information Content Of Futures Market Variables In India”, Delhi Business Review, 12(1), pp.101-112.
27. Desai, J., Desai, K.J., Joshi, N.A., Juneja, A., and Dave, A.R.(2011), “Forecasting of Indian Stock Market Index S&P CNX Nifty 50 Using Artificial Intelligence”, Behavioral & Experimental Finance eJournal, 3(79).
28. Fenzl, T., and Pelzmann, L.(2012), “Psychological and social forces behind aggregate financial market behavior”, Journal of Behavioral Finance, 13(1), pp.56-65.
29. Fisher, K.L., and Statman, M.(2000), “Investor Sentiment and Stock Returns”, Financial Analysts Journal, 56(2), pp.16-23.
30. Fodor, A., Kriegew, K., and Doran, J.S.(2010),“Do Option Open-Interest Changes Foreshadow Future Equity Returns?”, Working paper, available at SSRN.
31. Freeman, J.A., and Skapura, D.M.(1992), Neural Network Algorithms, Applications, and Programming Techniques, New York: Addison-Wesley Publishing Company.
32. Garag, A., and Ramesh, B.,(2011),“Relationship between Futures Price and Open Interest in Stock and Index futures in the Indian Stock Markets: Empirical Analysis”, International Conference on E-business, Management and Economics, 3, pp.5-8.
33. Gencay, R.(1996), “Non-linear Prediction of Security Returns with Moving Average Rules”, Journal of Forecasting, 15, pp.165-174.
34. Hirshleifer, D., and Shumway, T.(2003), “Good Day Sunshine: Stock Returns and the Weather”, The Journal of Finance, 58, pp.1009-1032.
35. Ho, K.-Y., Zheng, L., and Zhang, Z.(2013), “Volume, volatility and information linkages in the stock and option markets”, Review of Financial Economics, pp.168-174.
36. Hsu, H., Huang, W.-F., Wang, J., and Chang, M.(2009), “The impacts of institutional net buys/sells on returns in the Taiwan futures market”, Investment Management and Financial Innovations, 6(4), pp.209-220.
37. Hung, W., Chiao, C., Liao, T.L., and Huang, S.-T.(2012), “R&D, risks and overreaction in a market with the absence of the book-to-market effect”, International Review of Economics and Finance, 22(1), pp. 11-24.
38. Ivashina, V., and Scharfsteinb, D.(2010), “Bank lending during the financial crisis of 2008”, Journal of Financial Economics, 97(3),pp.319-338.
39. Jegadeesh, N., and Titman, S.(1993), “Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency”, Journal of Finance, 48(1), pp.65-91.
40. Kahneman, D., and Tversky, A.(1979),“Prospect theory: An analysis of decision under risk”, Econometrica, 47(2), pp.263-291.
41. Kamstra, M.J., Kramer L.A., and Levi, M.D.(2000), “Losing Sleep at the Market:The Daylight Saving Anomaly”, American Economic Review 90, 1005-1011.
42. Keynes, J. M. (1936), “The General Theory of Employment, Interest, and Money” , New York: Harcourt, Brace, and Co.
43. Kuo, W.-H., and Lin T.-Y.(2011),“Does the Put-Call Ratio Forecast Market Returns?Evidence from an Emerging Market”, International Research Journal of Finance and Economics, 69, pp.95-107.
44. Lam, K., Liu, T., and Wong, W.K.(2012),“A New Pseudo-Bayesian Model with Implications for Financial Anomalies and Investors’Behavior”, Journal of Behavioral Finance, 13(2), pp.93-107.
45. Le, V., and Zurbruegg, R.(2010), “The role of trading volume in volatility forecasting”, Journal of International Financial Markets, Institutions and Money, 20(5), pp.533-555.
46. Lee, W.Y., Jiang, C.X., and Indro, D.C.(2002), “Stock Market Volatility, Excess Returns, and the Role of Investor Sentiment”, Journal of Banking & Finance, pp.2277-2299.
47. Lei, U.T., So, M.S., and Zou, L.J.(2012), “Investor Sentiment-Relationship between VIX and Trading Volume”, Working paper, available at SSRN.
48. Lin, M-C.(2010), “The Dynamics Of Individual And Institutional Trading In The TAIEX Futures Markets”, International Journal of Electronic Business Management,8(4),pp.253-262.
49. Lu, T.-H., Shiu, Y.-M., and Liu, T.-C.(2012), “Profitable candlestick trading strategies-The evidence from a new perspective”, Review of Financial Economics, 21(2), pp.63-68.
50. Ouyang, H.(2011), “The information content of high, low and close prices”, 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce, AIMSEC 2011;Zhengzhou, pp.7374-7377.
51. Pan, Y., and Chen, S.(2011), “The empirical research of contrarian and momentum strategies in Chinese stock market (1993-2010)”, International Conference on Management and Service Science, MASS 2011.
52. Prechter, R.R., and Parker, W.D.(2007), “The Financial/Economic Dichotomy in Social Behavioral Dynamics: The Socioeconomic Perspective”, Journal of Behavioral Finance, 8, pp.84–108.
53. Saunders, E.M.(1993), “Stock Prices and Wall Street Weather”, The American Economic Review, 83(5), pp.1337-1345.
54. Sheu, H.-J., and Wei, Y.-C.(2011), “Effective options trading strategies based on volatility forecasting recruiting investor sentiment”, Expert Systems with Applications, 38 (1) , pp. 585-596.
55. Shiu, Y.-M., and Lu, T.-H.(2011), “Pinpoint and Synergistic Trading Strategies of Candlesticks”, International Journal of Economics and Finance, 3(4), pp.234-244.
56. Shu, J., and Zhang, J.E.(2012), “Causality in the VIX futures market”, Journal of Futures Markets, 32(1), pp.24-46.
57. Slovic, P.(1972), “Psychological Study of Human Judgment Implications for Investment Decision Making”, Journal of Finance ,27(4), pp.779-799.
58. Trippi R., and DeSieno, D.(1992), “Trading equity index futures with a neural network”, The Journal of Portfolio Management , 19(1), pp. 27-33.
59. Tsang, P.M., Ng,S.C., Kwan, R., Mak, J., and Choy, S.O.(2007),“An empirical examination of the use of NN5 for Hong Kong stock price forecasting”, Journal of Electronic Finance, 1, pp.373-388.
60. Vellido, A., Lisboa, P.J.G, and Vaughan, J.(1999) “Neural networks in business: a survey of applications (1992–1998)”, Expert Systems with Applications,17(1),pp.51-70.
61. Wang, K.-Y., and Chen, C.-K.(2012), “The influence of media coverage on the stock returns and momentum profits”, Proceedings - 6th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, IMIS 2012 , pp.943-947.
62. Watanabe, T., and Iwata, K.(2009), “Estimation for Up/Down Fluctuation of Stock Prices by Using Neural Network”, Communications in Computer and Information Science, 49, pp.171-178.
63. Yang, M.J., and Liu, M.-Y.(2012),“The Forecasting Power of the Volatility Index in Emerging Markets:Evidence from the Taiwan Stock Market”, International Journal of Economics and Finance, 4(2), pp.217-231.
64. Zhang, G., Patuwo, B. E., and Hu, M. Y.(1998), “Forecasting with Artificial Neural Networks :The State of the Art”, International Journal of Forecasting,14, pp.35-62.
65. Zhu, W., Tian, J., and Chen, Y.(2010), “An analysis of herding behavior under cognitive bias structure”, International Conference on E-Business and E-Government, pp.5369-5372.
論文全文使用權限:不同意授權