現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:現地化學氧化法整治受汽油污染之地下水案例經驗評析 [以論文名稱查詢館藏系統]
論文英文名稱:Remediation of gasoline contaminated groundwater by in-situ chemical oxidation [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:環境規劃與管理研究所
中文姓名:蘇一哲
英文姓名:I-Jer Su
研究生學號:92608510
學位類別:碩士
語文別:中文
口試日期:2006-06-30
論文頁數:98
指導教授中文名:林鎮洋
口試委員中文名:張添晉;洪榮勳
中文關鍵詞:現地化學氧化法Fenton’s試劑BTEXISCO空氣曝氣法AS土壤氣體抽取法SVE
英文關鍵詞:in-situ chemical oxidation (ISCO)BTEXair sparging (AS)soil vapor extraction (SVE)
論文中文摘要:本研究探討以現地化學氧化法 (in-situ chemical oxidation, ISCO)之Fenton’s試劑處理汽油中苯、甲苯、乙苯、二甲苯(benzene、toluene、ethylbenzene、xylenes,BTEX)污染地下水之實際案例,經由相關文獻資料、整治原理、去除效率、現場整治案例成效及成本等進行評析,以更清楚掌握其優點、限制及最佳之施用方法,做為國內相關人員在經濟效益及污染整治時程上考量,評估該污染整治操作技術之應用參考。
現地化學氧化法 (ISCO) 整合空氣曝氣法(AS) 及土壤氣體抽取法(SVE)系統為一項創新的技術,而國內現階段之整治案例,廠商為節省成本考量化學氧化劑注入方式係以重力式注入為主。就本研究現有之案例顯示在水力傳導係數為≧10-4cm/s及地下水中苯濃度<750ppb之整治場址,僅以空氣曝氣法(AS)及土壤氣體抽取法(SVE)之整合系統整治案例與現地化學氧化法 (ISCO) 之Fenton’s試劑整合空氣曝氣法(AS)、土壤氣體抽取法(SVE)之整治案例比較,兩者所需整治時程差距不大。
對於早期發現加油站洩漏所造成小區域之汽油污染整治案,為考量整治期限能夠縮短,以全部挖除污染土壤換土後,再以現地化學氧化法(ISCO)整合空氣曝氣法(AS) 及土壤氣體抽取法(SVE) 系統整治汽油污染之地下水,其在經濟效益及污染整治時程上,是有其優勢之整治法;若考量水源區之水質保護及環境敏感區域時,是否需以化學氧化法進行地下水整治,實有必要審慎為之。
論文英文摘要:This research discussed the treatment of the Fenton's agent of the in-situ chemical oxidation (ISCO) on contaminated groundwater polluted by benzene, toluene, ethylbenzene, and xylenes (BTEX) released from gasoline. The above treatment was evaluated by virtue of the literature review, principle of remediation, removal efficiency, real remediation cases and cost in order to clearly understand its merit, constraints, the best way to implement and to provide the domestic practitioners for assessing the remediation technique considering the economic benefit and the remediation schedule.
The integration of the in-situ chemical oxidation (ISCO), the air sparging (AS) and soil vapor extraction (SVE) is an innovative technology. However, as the domestic remediation cases are concerned, the local contractors use gravitational injection to inject chemical oxidants in order to save cost. The present research found that the difference of the remediation schedule between the cases treated by the integrated AS and SVE and those treated by the integrated Fenton’s agent of the ISCO, AS and SVE is not significant in the remediation site with hydraulic conductivity ≧ 10-4cm/s and benzene concentration < 750ppb in groundwater.
Regarding the remediation cases of the early discovered gasoline leakage from the gas station, in order to shorten the remediation period, the polluted soil was first completely removed and exchanged, then the polluted groundwater was treated by the integrated ISCO, AS, and SVE technology. The above remediation method is deemed favorable as the economic benefit and remediation schedule are concerned. However, it should be cautious about whether or not treating the groundwater by the chemical oxidation when considering the water quality protection of the water resource and environment sensitive region.
論文目次:目 錄

摘 要 I
英文摘要 II
誌 謝 IV
目 錄 V
表 目 錄 VII
圖 目 錄 IX
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 地下水污染來源 3
2.2 BTEX污染物特性及其危害 5
2.3 有機污染物在土壤及地下水中存在形式 10
2.4 有機污染物在環境中之傳輸特性 11
2.4.1 蒸發(Vaporization) 12
2.4.2 入滲(Infiltration) 12
2.4.3 傳流與分散 13
2.4.4 吸附 13
2.4.5 生物分解 14
2.5 有機污染物於土壤及地下水之分配機制 15
2.5.1 水-氣兩相間的平衡 15
2.5.2 水-固兩相之間的平衡 15
2.5.3 水-液兩相之間的平衡 16
2.6 地下水污染整治相關技術介紹 16
2.6.1 土壤氣體抽取法(Soil Vapor Extraction,SVE) 20
2.6.2 空氣曝氣法(Air Sparging) 21
2.6.3生物復育技術(Bioremediation) 23
2.7 化學處理(Chemical Treatment) 23
2.7.1 化學氧化劑 25
2.7.2現地化學氧化劑注入法 33
2.7.3 注入法的選擇([27]Yin and Allen,1999) 37
2.7.4 注入法設計考量因素 39
2.7.5 注入影響半徑 40
2.7.6 土壤破碎 42
2.7.7 與其他技術整合應用 43
第三章 研究方法 46
3.1 研究架構 46
3.2 研究方法 46
第四章 現地整治受汽油污染地下水之案例經驗分析 48
4.1 現地化學氧化法整治案例 48
4.1.1 印地安納州紐卡斯爾之停業汽油站([13]ITRC, 2005) 48
4.1.2 加州洛杉磯皮爾斯加油站([13] ITRC, 2005) 52
4.1.3 國內甲加油站 57
4.1.4 國內乙加油站 67
4.2 現場AS+SVE整治案例 72
4.2.1國內丙加油站 72
4.2.2國內丁加油站 76
4.3 綜合歸納與論述 89
第五章 結論與建議 93
5.1 結論 93
5.2 建議 94
參考文獻 95
附 錄 98
論文參考文獻:參考文獻

[1] USEPA, Treatment Technologies for Site Cleanup: Annual Status Report ,eleventh edition,pp.14-50, 2004.
[2] Bedient P.B., Rifai H.S. and Newell C.J., Groundwater contamination transport and remediation, second edition, pp.505-506, 1999。
[3] Pennell, K. D., Rhue, R. D., Rao, P. S. C., and Johnston, C. T., Vapor phase sorption of xylene and water on soil and clay minerals, Environ. Sci. Technology, Vo1. 26, pp.756-763, 1992。
[4] 歐國隆,「遲滯效應及尺度原則對NAPLs於孔隙介質中傳輸模擬之影響」,碩士論文,國立交通大學土木工程研究所,新竹,2000。
[5] 李光敦,水文學,五南出版社,台北,第87-142頁,2002。
[6] Horton, R. E., Analysis of runoff plot experiments with varying infiltration capacity, Trans. Am. Geophys. Union, Vo1. 20, pp. 693-710, 1939。
[7] 盧至人譯,R. J. Charbeneau, P. B. Bedient, R. C. Locher原著,地下水污染整治,國立編譯館,台北,第49-122頁,1997。
[8] 林文元,「油品在幾種台灣土壤中之吸附、脫附與移動性探討」,碩士論文,屏東科技大學環境工程與科學系,屏東,1998。
[9] Schwarzenbach, Choi H, Moreau JP, Oil spill sorption behavior of various sorbents studied by sorption capacity measurement and environmental scanning microscope, Microscopy Research and Technique, Vol. 25, No. 5, pp.447-455, 1993。
[10] 陳靜生,水環境化學,曉園出版社,台北,第113-137頁,1992。
[11] Boyd, SA, Mortland, MM, and Chiou, CT, Sorption characteristics of organic compounds on hexadecyltrimethylammonium-smectite, Soil Science Society of America Journal, Vol. 52, pp. 652-657, 1988。
[12] Miller, C.M.; Valentine, R.L.; Roehl, M.E.; and Alvarez, P.J.J., Chemical and Microbiological Assessment of Pendimenthalin Contaminated Soil after Treatment with Fenton’s Reagent, Water Research,Vol. 30, N0. 11, pp. 2579-2586, 1996。
[13] The Interstate Technology & Regulatory Council (ITRC)., Technical and Regulatory Guidance for In Situ Chemical Oxidation of Contaminated Soil and Groundwater, Second Edition ,pp.1-63, 2005。
[14] 林財富、林佩雲、林競京、習良孝、潘時正、吳雪蘋、沈義富(2005),現地化學氧化技術之限制與發展,第九屆土壤及地下水污染整治技術研討會論文集, 第61-74頁,台北市,2005年。
[15] Smith, B., Teel, A., and Watts, R., Identification of the Reactive Oxygen Species Responsible for Carbon Tetrachloride Degradation in Modified Fenton’s Systems, Environ. Sci. Technol., Vo1.38, pp.5465-5469, 2004。
[16] Kwan W., and Voelker, B., Rates of Hydroxyl Radical Generation and Organic Compound Oxidation in Mineral-Catalyzed Fenton-like Systems, Environ. Sci. Technol, Vo1.37, pp. 1150-1158, 2003。
[17] Bishop, D.F. et.al., Hydrogen Peroxide Catalytic Oxidation of Refractory Organics in Municipal Waste Waters, in Ind. Eng. Chem., Process Design & Development, vol.7, pp. 111-117,1968。
[18] Walling, Cheves, Fenton Reagent Revisited, in Accts of Chem. Research, vol. 8, pp. 125-131, 1975。
[19] Stuart M. Peters, Tai T. Wong, John G. Agar,O'Connor Associates Environmental Inc., Calgary, Alberta , A laboratory study on the degradation of gasoline contamination using fenton's reagent, Proceedings 54th Canadian Geotechnical Conference, Calgary, pp.1170-1177, 2001。
[20] Chen, C.T., Tafuri, A.N., Rahman, M., and Foerst, M.B., Chemical oxidation Treatment of petroleum contaminated soil using Fenton’s reagent. Journal of Environmental Science and Health., Vo1.A33 , N0. 6, pp. 987-1008. ,1998。
[21] Lou, J.C., and Lee, S.S., Chemical oxidation of BTEX using Fenton’s reagent. Hazardous Waste and Hazardous Materials., Vo1. 12, N0. 2, pp. 185-193, 1995。
[22] Qui, Y., M. Zappi, C. Kuo, and E. Fleming., A Kinetic and Mechanistic Study of the Ozonation of Dichlorophenols in Aqueous Solutions, Journal of Environmental Engineering, Vo1.125, N0. 5, pp. 441-50., 1999。
[23] Nelson, C., and R. Brown., Adapting Ozonation for Soil and Groundwater Cleanup, Chemical Engineering (November), pp.18-22., 1994。
[24] Amarante D., Applying in situ chemical oxidation. Pollution Engineering, Vo1.32, N0. 2, pp.40-42., 2000。
[25] Dijkshoorn P., In-situ chemical oxidation of chlorinated solvents with potassium permanganate on a site in Belgium. Proceedings of ConSoil, 2003-8th International FZK/TNO Conference on Contaminated Soil, pp.1686-1691, 2003。
[26] Banerjee, M., and R. S. Konar., Comment on the Paper ‘Polymerization of Acrylonitrile Initiated by K2S2O8-Fe(II) Redox System, Journal of Polymer Science: Polymer Chemistry, Vo1. 22, pp.1193–95, 1984。
[27] Yin, Y., and H. E. Allen., In Situ Chemical Treatment. Pittsburgh: Groundwater Remediation Technologies Analysis Center., pp1-59, 1999.。
[28] Siegrist, R. L., K. S. Lowe, L. C. Murdoch, T. L. Case, and D. A. Pickering., In Situ Oxidation by Fracture-Emplaced Reactive Solids, Journal of Environmental Engineering Vo1.125, N0. 5, pp. 429–440, 1999。
[29] USDOE, Office of Science and Technology, Springfield, VA., Subsurface Contaminants Focus Area Report, DOE/EM-0296, 1996.
[30] Travis M. McGuire, James M. McDade, and Charles J. Newell., Performance of DNAPL Source Depletion Technologies at 59 Chlorinated Solvent-Impacted Sites, Ground Water Monitoring & Remediation, Vol. 26, pp. 73-84, 2006。
[31] U.S. Air Force Research Laboratory, Airbase and Environmental Technology Division, Tyndall Air Force Base (AFB), Florida., Air Sparging Design Paradigm , Page 1-5, 2002。
[32] 林鎮洋、郭玲惠及郭振泰等,「德國土壤復育法規與技術初探」,工業污染防治期刊,第53期,第199~209頁,1995。
參考網址:
[1] 行政院環境保護署:http://www.epa.gov.tw
[2] TOXNET:http://toxnet.nlm.nih.gov
[3] 美國環境保護署:http://www.epa.gov
[4] 美國clu-in組織:http://www.clu-in.org
[5] US Peroxide:http://www.h2o2.com / intro/overview.html.
論文全文使用權限:同意授權於2007-08-17起公開