現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:結合整體經驗模態分解、基因演算法與極速學習機於財務時間序列預測之研究 [以論文名稱查詢館藏系統]
論文英文名稱:Financial Time Series Forecasting Using Ensemble Empirical Decomposition Mode, Genetic Algorithm and Extreme Learning Machine [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:管理學院
系所名稱:商業自動化與管理研究所
畢業學年度:99
出版年度:100
中文姓名:林政弘
英文姓名:Jheng-Hong Lin
研究生學號:97488015
學位類別:碩士
語文別:中文
口試日期:2011-05-31
論文頁數:74
指導教授中文名:林鳳儀
口試委員中文名:葉清江;趙莊敏;吳斯偉
中文關鍵詞:財務時間序列預測極速學習機經驗模態分解基因演算法
英文關鍵詞:Stock Price PredictionExtreme Learning MachineEnsemble Empirical Mode DecompositionGenetic Algorithm
論文中文摘要:準確地預測股票價格,已為投資決策重要的問題,由於金融時間序列具有非線性及非穩態之特性,難以運用統計模型進行預測。而類神經網路,使用上較無需嚴格的理論假設,因此被大量應用於財務預測。在類神經網路之演算法中,極速學習機(Extreme Learning Machine)克服了傳統倒傳遞(Back Propagation)演算法所面臨的缺陷,而倍受矚目。
本研究以台灣加權股價指數、上海綜合股價指數、香港恆生指數之2001年至2010年收盤價為研究對象,提出了四種預測模型。其中極速學習機用於建立預測模型;整體經驗模態分解(Ensemble Empirical Mode Decomposition)用於把股價分解成較易於預測之本質模態函數;而基因演算法(Genetic Algorithm)則試圖找出模型最佳參數。另外為驗證所提模型優於傳統統計模型,所提四種模型也與ARIMA模型比較。
研究結果指出,結合極速學習機、基因演算法、整體經驗模態分解之模型有最好的預測成效;而所提四種模型之預測成效皆優於ARIMA模型,可見所提模型之優越。
論文英文摘要:Financial time series are inherently nonlinear and non-stationary, it is therefore difficult using statistical models to forecast. ANN(Artificial Neural Networks)does not require strict theoretical assumptions, so it has been widely applied for financial prediction. On ANN learning algorithms, the ELM(Extreme Learning Machine) overcomes the drawback of traditional Back-propagation.
This study takes the closing price of Taiwan Capitalization Weighted Stock Index, Shanghai Stock Exchange Composite Index and Hong Kong Hang Seng Index as research subjects during the period of 2001 to 2010. We propose a hybrid forecasting model based on EEMD(Ensemble Empirical Mode Decomposition), GA (Genetic Algorithm) and ELM. Firstly, by using EEMD to decompose stock price into several IMF(Intrinsic Mode Functions) and each IMF component is modeled by individual EELM respectively. Then, we find the optimal parameters with GA. In order to examine the proposed models are better than traditional statistical models, these four models also compare with the ARIMA model.
The study concluded the model combined with ELM, GA, EEMD, which has the best prediction performance. The performance of proposed four models is better than ARIMA models, showing the excellence of proposed models.
論文目次:中文摘要 I
英文摘要 II
目錄 III
誌謝 IV
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 1
1.3 研究目的 4
1.4 研究流程 4
第二章 文獻探討 6
2.1預測股價 6
2.2自我迴歸整合移動平均 8
2.3經驗模態分解 11
2.4整體經驗模態分解 16
2.5基因演算法 18
2.6類神經網路 20
2.7極速學習機 25
第三章 研究方法 28
3.1研究架構 28
3.2整體經驗模態分解 31
3.3基因演算法 34
3.4極速學習機 37
第四章 研究結果 39
4.1整體經驗模態分解分析 39
4.2設定ARIMA 45
4.3設定極速學習機 50
4.4預測結果 51
第五章 結論與建議 59
5.1研究結論 59
5.2未來研究 60
參考文獻 61
附錄 A 66
附錄 B 69
附錄 C 72
論文參考文獻:中文文獻
1. 李海涵 (2005),「改良式演算法應用在訓練類神經網路-結合基因演算法」,碩士論文,國立臺北科技大學商業自動化與管理研究所,台北。
2. 張斐章、張麗秋 (2005),「類神經網路」,東華書局。
3. 葉怡成 (2003),「類神經網路模式應用與實作」,儒林圖書公司。
4. 鄭俊鴻 (2009),希爾伯特-黃轉換為基礎之適應性決策雜訊濾除,碩士論文,國立東華大學電機工程學系,花蓮。
5. 楊亦農 (2005),「時間序列分析-經濟與財務上之應用」,雙林書廊

英文文獻
1. Atsalakis, G. S. and Valavanis, K. P. (2009), “Surveying Stock Market Forecasting Techniques–Part II: Soft Computing Methods”, Expert Systems with Applications, Vol. 36, No. 3, pp.5932–5941.
2. Brav, A., and Heaton, J. (2002), “Competing Theories Of financial Anomalies”, The Review of Financial Studies, Vol.15, pp.575–613.
3. Cao, Q. and Parry, M. E. (2009), “Neural Network Earnings Per Share Forecasting Models: A Comparison of Backward Propagation And The Genetic Algorithm”, Decision Support Systems, Vol. 47, No. 1, pp.32-41.
4. Cao, Q., Leggio, K. B. and Schniederjans, M. J. (2005), “A Comparison Between Fama and French’s Model and Artificial Neural Networks in Predicting the Chinese Stock Market,” Computers and Operations Research, Vol. 32, No. 10, pp.2499-2512.
5. Chen, F.L.and Ou, T. Y. (2011), “Sales Forecasting System Based On Gray Extreme Learning Machine With Taguchi Method In Retail Industry”, Expert Systems with Applications, Vol. 38, No. 3, pp.1336–1345.
6. Cheng, J., Yu, D. and Yang Y. (2006), “A Fault Diagnosis Approach for Roller Bearings Based on EMD Method and AR Model”, Mechanical Systems and Signal Processing, Vol. 20, No. 2, pp.350-362.
7. Ediger, V. S., and Akar S. (2007). “ARIMA Forecasting of Primary Energy Demand by Fuel in Turkey”, Energy Policy, Vol. 35, pp. 1701-1708.
8. Fama, E.F. (1970), “Efficient Capital Markets: A Review of Theory And Empirical Work”, Journal of Finance, Vol. 25, pp.383–417.
9. Flandrin, P. and Goncalves, P. (2004), ”Empirical Mode Decomposition as Data-Driven Wavelet-Like Expansions”, International Journal of Wavelets, Multi-resolution and Information Processing, Vol. 2, Mo. 4, pp.1-20.
10. Ghiassi, M., Saidane, H. and Zimbra, D.K. (2005), “A Dynamic Artificial Neural Network Model For Forecasting Time Series Events”, International Journal of Forecasting, Vol. 21, No. 2, pp.341-362.
11. Ghosh, S. and A. Das(2002),“Short-run Electricity Demand Forecasts in Maharashtra”, Applied Economics, Vol.34, pp. 1055-1059.
12. Goldberg, D. E. (1989), Genetic algorithms in search, optimization and machine learning, Reading, MA: Addison Wesley.
13. Greg, T. (2001), “Neural Network Forecasting of Canadian GDP Growth,” International Journal of Forecasting, Vol. 17, No. 1, pp.57-69.
14. Haugen, R. A (1999). The New Finance: The Case Against Efficient Markets (2nd Ed), Upper Saddle River, NJ: Prentice Hall.
15. Holland, J. H. (1975), Adaptation in natural and artificial systems, Ann Arbor, MI: The University of Michigan Press.
16. Huang, G. B, Zhu, Q. Y. and Siew, C. K. (2004), “Extreme Learning Machine: A New Learning Scheme of Feedforward Neural Networks”, Proceedings of International Joint Conference on Neural Networks, Budapest, Hungary, Vol. 2, pp.985–990.
17. Huang, G. B, Zhu, Q. Y. and Siew, C. K. (2006), “Extreme Learning Machine: Theory and Applications”, Neurocomputing, Vol. 70, pp.489–501.
18. Huang, N. E. and Wu, Z. (2008), “A Review on Hilbert-Huang Transform: Method and Its Applications To Geophysical Studies”, Reviews of Geophysics, Vol. 46, pp.RG2006:1-23.
19. Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shin, H. H., Zheng, Q., Yen, N. C., Tung, C. C., and Liu, H. H. (1998), “The Empirical Mode Decomposition And The Hilbert Spectrum For Nonlinear And Non-Stationary Time Series Analysis”, Proceedings:Mathematical, Physical and Engineering Sciences, Vol. 454, No. 1971, pp.903–995.
20. Huang, N. E., Wu, M. L., Qu, W., Long, S. R. and Shen, S. S .P. (2003), “Applications Of Hilbert–Huang Transform to Non-Stationary Financial Time Series Analysis”, Applied Stochastic Models in Business and Industry, Vol.19, pp.245-268.
21. Ilan, A., Min, Q. and Sadowski, R. J. (2001), “Forecasting Aggregate Retail Sales: A Comparison of Artificial Neural Networks and Traditional Methods,” Journal of Retailing and Consumer Services, Vol. 8, No. 3, pp.147-156.
22. Jain, A. and Kumar, A. M. (2007), “Hybrid neural network models for hydrologic time series forecasting”, Applied Soft Computing, Vol. 7, pp.585–592.
23. Jensen, M.C. (1978), “Some Anomalous Evidence Regarding Market Efficiency”, Journal of Financial Economics, Vol. 6, pp.95–101.
24. Jones, D. F., Mirrazavi, S. K. and Tamiz, M. (2002), "Multi-objective meta-heuristics: An overview of the current state-of-the-art", European Journal of Operational Research, Vol. 139, pp.1-9.
25. Kim, D., Paek, S. H. and Oh, H. S. (2008), “A Hilbert-Huang Transform Approach for Predicting Cyber-attacks”, Journal of the Korean Statistical Society, Vol. 37, No. 3, pp.277-283.
26. Konak, A., Coit, D.W. and Smith, A. E. (2006) “Multi-objective optimization using genetic algorithms: A tutorial”, Reliability Engineering and System Safety, Vol. 91, No. 9, pp.992-1007.
27. Koulouriotis, D.E., Diakoulakis, I.E., Emiris, D.M., and Zopounidis, C.D. (2005), “Development of dynamic cognitive networks as complex systemsapproximators: Validation in financial time series, Applied Soft Computing, Vol.5, pp.157–179.
28. Kumar, M., Husian, M., Upreti, N. and Gupta, D. (2010), “Genetic Algorithm: Review And Application”, International Journal of Information Technology and Knowledge Management, Vol. 2, No. 2, pp.451-454.
29. Leigh, W., Hightower, R., and Modani, N. (2005). “Forecasting The New York Stock Exchange Composite Index With Past Price And Interest Rate On Condition of Volume Spike”, Expert Systems with Applications, Vol.28, pp.1-8.
30. Li, X., (2006), “Temporal structure of neuronal population oscillations with empirical mode decomposition”, Physics Letters A, Vol. 356, No. 3, pp.237–241.
31. Liang, N. Y., Saratchandran, P., Huang, G. B. And Sundararajan, N. (2006), “Classification Of Mental Tasks From EEG Signals Using Extreme Learning Machine”, International Journal of Neural Systems, Vol. 16, No. 1, pp.29–38.
32. Lu, C. J. (2010), “Integrating independent component analysis-based denoising scheme with neural network for stock price prediction”, Expert Systems with Applications, Vol. 37, No. 10, pp.7056-7064.
33. Lu, C. J., Lee, T. S. and Chiu, C. C. (2009), “Financial time series forecasting using independent component analysis and support vector regression”, Decision Support Systems, Vol. 47, No. 2, pp.115-125.
34. Mak, B., Blanning, R. and Ho, S. (2006), "Genetic algorithms in logic tree decision modeling," European Journal of Operation Research, Vol. 170, pp. 597-612.
35. Malkiel, B. G. (1981), A Random Walk Down Wall Street, New York: Norton.
36. McCall, J. (2005), “Genetic algorithms for modelling and optimisation”, Journal of Computational and Applied Mathematics Vol. 184, No. 1, pp.205-222.
37. Menkhoff, L. (2010), “The use of technical analysis by fund managers: International evidence”, Journal of Banking and Finance, Vol. 34, No. 11, pp. 2573-2586.
38. Murphy, J. J. (1999), Technical Analysis of the Financial Markets:A Comprehensive Guide To Trading Methods And Applications, New York Institute of Finance.
39. Pai, P. F., and Lin, C.S. (2005). “A Hybrid ARIMA and support vector machines model in stock price forecasting”, Omega, Vol.33m No.6, pp.497–505.
40. Pring, M. J. (2002), Technical Analysis Explained, New York: McGraw-Hill..
41. Ratner, M. and Leal, R.C.L. (1999), “Tests of Technical Trading Strategies in the Emerging Markets of Latin America and Asia”, Journal of Banking and Finance, Vol. 23, pp.1887-1905.
42. Sexton, R.S., Dorsey, R.E. and Sikander, N.A. (2004), “Simultaneous optimization of neural network function and architecture algorithm”, Decision Support Systems, Vol. 36, No. 3, pp.283–296.
43. Shiller, R. J. (2003), “From efficient markets theory to behavioral finance”, Journal of Economic Perspectives, Vol. 17, 83–104.
44. Singh, R. and Balasundaram, S. (2007), “Application of Extreme Learning Machine Method for Time Series Analysis”, International Journal of Intelligent Systems and Technologies, Vol. 2, No. 4, pp.256-262.
45. Sun, Z. L., Choi, T. M., Au, K. F. and Yu, Y. (2008), “Sales forecasting using extreme learning machine with applications in fashion retailing”, Decision Support Systems, Vol. 46, pp.411–419.
46. Suresh, S., Saraswathi, S. and Sundararajan, N. (2010), “Performance enhancement of extreme learning machine for multi-category sparse data classification problems”, Engineering Applications of Artificial Intelligence, Vol. 23, pp.1149–1157.
47. Timmermann, A. and Granger, C. W .J. (2004), “Efficient market hypothesis and forecasting”, International Journal of Forecasting, Vol. 20, pp.15–27.
48. Thaler, R. H. (1993), Advances in Behavioral Finance, New York, NY: Russell Sage Foundation.
49. Wong, W. K. and Guo, Z. X. (2010), “A hybrid intelligent model for medium-term sales forecasting in fashion retail supply chains using extreme learning machine and harmony search algorithm”, Production Economics, Vol. 128, pp.614–624
50. Wu, Z. and Huang, N. E. (2009), “Ensemble Empirical Mode Decomposition:A Noise-Assisted Data Analysis Method”, Advances in Adaptive Data Analysis, Vol. 1, No. 1 pp.337–358.
51. Xu, X. Y., Qi, Y. Q. and Hua, Z. S. (2010), “Forecasting demand of commodities after natural disasters”, Expert Systems with Applications, Vol. 37, pp.4313–4317.
52. Yang, J. N, Lei, Y., Lin S. and Huang, N. (2004), “Hilbert–Huang based approach for structural damage detection”, Journal of Engineering Mechanics, Vol. 130, No.1, pp.85–95.
53. Yen, G. and Lee, C.F. (2008), “Efficient market hypothesis (EMH): past, present and future”, Review of Pacific Basin Financial Markets and Policies, Vol. 11, pp. 305–329.
54. Yu, L., Wang, S. Y. and Lai, K. K. (2005) “A novel nonlinear ensemble forecasting model incorporating GLAR and ANN for foreign exchange rates”, Computers and Operations Research, Vol. 32, No. 10, pp.2523-2541.
55. Yu, L., Wang, S. Y. and Lai, K. K. (2008), “Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm”, Energy Economics, Vol. 30, No. 5, pp.2623-2635.
56. Yu, S., Zhu, K. and Diao, F. (2008) “A dynamic all parameters adaptive BP neural networks model and its application on oil reservoir prediction”, Applied Mathematics and Computation, Vol. 195, No. 1, pp.66-75.
57. Zhang, G. Z., Huang, D. S. (2004), “Prediction of inter-residue contacts map based on genetic algorithm optimized radial basis function neural network and binary input encoding scheme”, Journal of Computer-Aided Molecular Design, Vol. 18, pp.797–810.
58. Zhang, X., Lai, K. K. and Wang, S. Y. (2008), “A new approach for crude oil price analysis based on Empirical Mode Decomposition”, Energy Economics, Vol. 30, No.5, pp.905–918.
59. Zhang, X., Yu, L., Wang, S.Y. and Lai, K. K. (2009), “Estimating the impact of extreme events on crude oil price: An EMD-based event analysis method”, Energy Economics, Vol. 31, No. 5, pp.768-778.
60. Zhu, Q. Y., Qin, A. K, Suganthan, P. N. and Huang, G. B. (2005), “Evolutionary extreme learning machine”, Pattern Recognition, Vol. 38, No. 10, pp.1759–1763.
61. Zweiri, Y.H., Seneviratne, L.D. and Althoefer, K. (2005), “Stability analysis of three-term backpropagation algorithm”, Neural Network, Vol.18, pp.1341–1347.
論文全文使用權限:同意授權於2014-08-10起公開