現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:在Kretschmann組態下探討金屬奈米柱陣列之光耦合行為 [以論文名稱查詢館藏系統]
論文英文名稱:Metal nanorod array coupling property in Kretschmann system [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:電資學院
系所名稱:光電工程系研究所
畢業學年度:101
出版年度:102
中文姓名:戴嘉緯
英文姓名:Jia-Wei Dai 戴嘉緯
研究生學號:99658065
學位類別:碩士
語文別:中文
口試日期:2013-07-30
論文頁數:56
指導教授中文名:任貽均
指導教授英文名:Yi-Jun Jen 任貽均
口試委員中文名:周趙遠鳳;陳隆建;游竟維
口試委員英文名:Yuan-Fong Chau 周趙遠鳳;Lung-Chien Chen 陳隆建;Ching-Wei Yu 游竟維
中文關鍵詞:奈米柱陣列Kretschmann組態吸收散射
英文關鍵詞:nanorod arrayKretschmann configurationabsorptionscattering
論文中文摘要:本研究利用斜向角度沉積技術,研製金屬奈米柱陣列,在材料上選擇銀與鋁,以基板方位角旋轉和方位角掃描技術分別成長銀直柱陣列和鋁斜柱陣列;在Kretsch-
mann組態下量測反射與吸收隨可見光波長400nm至700nm以及入射角度40⁰至70⁰之變化;進而分析與比較,不同薄膜的材料與厚度所造成其光學特性之差異。
量測結果顯示,銀和鋁奈米柱陣列在全反射的情形下具有廣波域與廣角的吸收特性,進一步地檢測吸收在前散射的能量分配,發現銀直柱陣列有高於一成的前散射光強度,而對鋁斜柱陣列而言,前散射僅百分之一左右。研究結果顯示在Kretschmann組態下可將光高效率地耦合至金屬陣列,而不同材料與奈米結構之金屬陣列,則會產生不同比例的散射與消光。
論文英文摘要:Traditional optical thin films exhibit low absorption when light is incident obliquely because the optical path decreases with increasing angle of incidence. A thin light absorber is also a challenge to perform high absorption at oblique incidence. Under the condition of total reflection, a thin metal film with thickness around 200nm in a Kretschmann configuration (prism / metal film/ air) enables to absorb light at an extremely small angle range by exciting surface plasmon at the interface of metal/air. In this work, a metamaerial thin film composed of metal nanorods is fabricated and used to absorb light in high efficiency.
A metal nanorod array(NRA) deposited obliquely is arranged in a prism-coupling system to observed the reflection under the condition of total reflection of the system: BK7 prism/ metal NRA/ Air. The metal NRA is around 200nm thick and tilted at an angle of 35 with respect to the surface normal. The deposition plane defined by the directions of rod and surface normal is orientated at angles of =0˚ and =180˚ with respect to the plane of incidence to measure the reflectance versus incident angles from 40˚ to 70˚ and wavelengths from 400nm to 700nm.
When the deposition plane is the same with the plane of incidece, the reflectance spectra indicate that the metal NRA exhibits strong absorptance over 80% at angles of incidence from 40˚ to 55˚ for both p-polarization and s-polarization. The enhanced p-polarized absorbtance is extended from 40˚ to 70˚.
論文目次:中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 v
圖目錄 vi
第一章 緒論 1
1.1 前言 1
1.2 奈米雕刻薄膜發展背景 1
1.3 斜向沉積技術 3
1.3.1 基板運轉技術 4
1.4 奈米金屬之吸收特性 5
1.5 表面電漿簡介 7
1.5.1 衰減全反射(Attenuated total reflection) 9
1.6 表面電漿共振感測器 10
1.6.1 利用全內反射光譜顯微鏡觀察單金屬奈米粒子 10
1.6.2 利用超長程表面電漿波製作超高解析度之感測器 11
1.6.3 表面電漿共振應用於氣體感測器上 12
1.7 研究動機 13
第二章 實驗架構 14
2.1鍍膜系統 14
2.2實驗流程 17
2.3薄膜製鍍 18
2.3.1 鋁奈米斜柱陣列結構製鍍方式 18
2.3.2 銀奈米直柱陣列結構製鍍方式 19
第三章 量測系統 20
3.1光譜量測系統 20
3.2反射式角頻譜量測系統 21
3.2.1 單波長反射式角頻譜量測 23
3.2.2 多波長反射式角頻譜量測 24
第四章 實驗結果分析與討論 25
4.1薄膜結構與製鍍參數 25
4.1.1 鋁奈米斜柱陣列薄膜 25
4.1.2 銀奈米直柱陣列薄膜 26
4.2薄膜結構之不同尺寸分布 28
4.2.1 鋁奈米斜柱陣列結構之不同等效直徑尺寸分布 28
4.2.2 銀奈米直柱陣列結構之不同等效直徑尺寸分布 29
4.3透射與反射光譜 32
4.3.1 鋁奈米斜柱陣列結構之透射與反射光譜 33
4.3.2 銀奈米直柱陣列結構之透射與反射光譜 34
4.4在Kretschmann組態下量測金屬奈米柱陣列之光耦合行為 37
4.4.1 鋁奈米斜柱陣列結構在Kretschmann組態下之光耦合 37
行為
4.4.2 銀奈米直柱陣列結構在Kretschmann組態下之光耦合 41
行為
4.5分析與討論 47
第五章 結論 52
參考文獻 53
論文參考文獻:[1] K. Robbie, J. C. Sit and M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B, vol. 16, 1115-122, 1998.
[2] Herma van Kranenburg and Cock Lodder, “Tailoring growth and local composition by oblique-incidence deposition: a review and new experimental data,” Materials Science and Engineerin, Rll, 295-354, 1994.
[3] Yi-Jun Jen, Akhlesh Lakhtakia, Ching-Wei Yu, Chia-Feng Lin, Meng-Jie Lin, Shih-Hao Wang and Jyun-Rong Lai, “Bio-inspired Achromatic Waveplates for Visible Light,” Nature Communications 2, 1-5, 2011.
[4] Yi-Jun Jen, Meng-Jie Lin, and Jung-Hui Chao, “Single dielectric columnar thin film as a humidity sensor,”Sensors & Actuators, B: Chemical 149, 67-70, 2010.
[5] Yi-Jun Jen, Akhlesh Lakhtakia and Ching-Wei Yu, “Negative real parts of the equivalent permittivity, permeability, and refractive index of sculptured-nanorod arrays of silver,” J. Vac. Sci. Technol. A 28, 1078, 2010.
[6] Yi-Jun Jen, Akhlesh Lakhtakia, Ching-Wei Yu, Jheng-Jie Jhou, Wei-Hao Wang, Meng-Jie Lin, Huang-Ming Wu, and Hung-Sheng Liao,“Silver/silicon dioxide/silver sandwich films in the blue-to-red spectral regime with negative-real refractive index,” Appl. Phys. Lett. 99, 181117, 2011.
[7] Y.-P.Zhao, “Absorbance spectra of aligned Ag nanorod arrays prepared by oblique,” J. Appl. Phys. 100(6), pp.063527, 2006.
[8] Y.-P.Zhao, “Extinction spectra and electrical field enhancement of Ag nanorods with different topologic shapes,” J. Appl. Phys. 102, pp.113308, 2007.
[9] Yi-Jun Jen, Meng-Jie Lin, Huang-Ming Wu, Hung-Sheng Liao, and Jia-Wei Dai “An interference coating of metamaterial as an ultrathin light absorber in the violet-to-infrared regime” Optics Express, Vol. 21, Issue 8, pp. 10259-10268, 2013.
[10] H. Raether, “Surface plasmons on smooth and rough surfaces and on gratings,” Springer-Verlag, Berlin, 1988.
[11] Otto, A, “Excitation of Nonradiative Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection,” Z. Phys., Vol. 216, 1968, pp. 368-410.
[12] E. Kretschmann, “Die Bestimmung Optischer Konstanten von Metallen durch Anregung von Oberflaechenplasmaschwingungen,” Z. Phys., Vol. 241, pp. 313-324, 1971.
[13] D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett., Vol. 47, pp. 1927-1930,1981.
[14] Homola J, Yee S.S Gauglitz G, “Surface plasmon resonance sensors: review” Sensors and Actuators B: Chemical, Volume 54, Number 1, pp. 3-15(13), 1999.
[15] C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, Chan, J. P. Spatz, M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy” Applied Physics Letters, Vol. 77, No. 19, pp. 2949-2951, 2000.
[16] G.G. Nenningera, P. Tobiškab, J. Homola1, S.S. Yeea, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors” Sensors and Actuators B: Chemical, Volume 74, Number 1, pp. 145-151(7), 2001.
[17] I. R. Hooper and J. R. Sambles, “Differential ellipsometric surface plasmon resonance sensors with liquid crystal polarization modulators” Applied Physics Letters;10/11/2004, Vol. 85 Issue 15, p3017, 2004.
[18] 李正中,光學薄膜與鍍膜技術,台北:藝軒圖書出版社,2006,第282頁。
[19] Paritosh, D. J. Srolovitz, “Shadowing effects on the microstructure of obliquely deposited films” J. Appl. Phys., Vol. 91, No. 4, 15 February 2002.
[20] D. A. Gish, M. A. Summers, M. J. Brett, “Morphology of periodic nanostructures for photonic crystals grown by glancing angle deposition” Photonics and Nanostructures - Fundamentals and Applications, Volume 4, Issue 1, Pages 23–29, 2006.
[21] Samer Kassam, Ian J. Hodgkinson, Qi hong Wu, and Sarah C. Cloughley, “Light scattering from thin films with an oblique columnar structure and with granular inclusions” JOSA A, Vol. 12, Issue 9, pp. 2009-2021, 1995.
[22] Ian J. Hodgkinson, Peter I. Bowmar, and Qi hong Wu “Scatter from tilted-columnar birefringent thin films: observation and measurement of anisotropic scatter distributions” Applied Optics, Vol. 34, Issue 1, pp. 163-168, 1995.
[23] Ian J. Hodgkinson, Qi Hong Wu, “Practical designs for thin film wave plates” Opt. Eng. 37(9), 2630-2633, 1998.
[24] H. A. Macleod, Thin-Film Optical Filters, 2nd ed. (Adam Hilger, 1986)
[25] H. Angus Macleod and Alfred Thelen, “Optical interference coatings: introduction by the feature editors” Applied Optics, Vol. 28, Issue 14, pp. 2697-2697, 1989.
[26] F. Chiadini and A. Lakhtakia, “Design of wideband circular-polarization filters made of chiral sculptured thin films” Microwave and Optical Technology Letters, 42, 135 - 138, 2004.
[27] Hodgkinson I, Wu QH, Arnold M, De Silva L, Beydaghyan G, Kaminska K, Robbie K, “Biaxial thin-film coated-plate polarizing beam splitters” Appl. Opt. 45, 1563-1568, 2006.
[28] K. Robbie, M. J. brett, A. Lakhtakia, "First thin film realization of a helicoidal bianisotropic medium," J. Vac.Sci. Technol. A 13, 2991-2993,1996.
[29] A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, Bellingham,WA, 2005).
[30] I. Hodgkinson and Qi-hong Wu, "Inorganic Chiral Optical Materials," Adv. Mater. 13,889-897, 2001.
[31] Y.-P. Zhao, S. B. Chaney, and Z.-Y. Zhang, "Absorbance spectra of aligned Ag nanorod arrays prepared by oblique angle deposition," J. Appl. Phys. 100, 063527, 2006.
[32] S. B. Chaney, Z.-Y. Zhang, and Y.-P. Zhao, "Anomalous polarized absorbance spectra of aligned Ag nanorod arrays," Appl. Phys. Lett. 89, 053117, 2006.
[33] Q. Zhou, Y. P. He, J. Abell, Z. J. Zhang, and Y. P. Zhao, "Surface-enhanced Raman scattering from helical silver nanorod arrays," Chem. Comm. 47, 4466-4468, 2011.
[34] Q. Zhou, Y. P. He, J. Abell, Z. J. Zhang, and Y. P. Zhao, "Optical properties and surface enhanced Raman scattering of L-shaped silver nanorod arrays," J. Phys. Chem. C 115, 14131–14140, 2011.
[35] M. Suzuki et. al, "Ag nanorod arrays tailored for surface-enhanced Raman imaging in the near-infrared region," Nanotech. 19, 265304, 2008.
[36] M. Suzuki et. al, "Tailoring coupling of light to local plasmons by using Ag nanorods/structured dielectric/mirror sandwiches," J. Nanophoton. 3, 031502, 2009.
[37] S. V. Kesapragada and D. Gall, "Two-component nanopillar arrays grown by glancing angle deposition," Thin Solid Films 494, 234, 2006.
[38] S. V. Kesapragada, P. Victor, O. Nalamasu, and D. Gall, "Nanospring pressure sensors grown by glancing angle deposition," Nano Lett. 6, 854, 2006.
[39] C. M. Zhou, H. F. Li, and D. Gall, "Multi-component nanostructure design by atomic shadowing," Thin Solid Films 517, 1214, 2008.
[40] M. M. Hawkeye and M. J. Brett, "Optimized Colorimetric Photonic-Crystal Humidity Sensor Fabricated Using Glancing Angle Deposition," Adv. Mater. 21, 3652-3658, 2011.
[41] M. M. Hawkeye, R. Joseph, J. C. Sit, and M. J. Brett, "Coupled defects in one-dimensional photonic crystal films fabricated with glancing angle deposition," Opt. Express 18, 13220-13226,2010.
[42] Yi-Jun Jen, Akhlesh Lakhtakia, Ching-Wei Yu, and Chin-Te Lin, "Vapor-deposited thin films with negative real refractive index in the visible regime," Opt. Express 17, 7784-7789, 2009.
[43] Yi-Jun Jen, A. Lakhtakia, Ching-Wei Yu, Chia-Feng Lin, Meng-Jie Lin, Shih-Hao Wang and Jyun-Rong Lai, "Bio-inspired Achromatic Waveplates for Visible Light," Nature Commun. 2, 1-5, 2011.
[44] D. Vicka, L.J. Friedrich, S.K. Dew, M.J. Brett, K. Robbie, M. Seto, T. Smy, "Self-shadowing and surface diffusion effects in obliquely deposited thin films," Thin Solid Films 339, 88-94, 1999.
[45] I. J. Hodgkinson, Q.-h. Wu, and J. Hazel,"Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide," Appl. Opt. 37, 2653-2659, 1998.
[46] R. N. Tait, T. Smy, and M. J. Brett, "Modeling and characterization of columnar growth in evaporated films," Thin Solid Films 226, 196, 1993.
[47] A. Lakhtakia and R Messier, "Sculptured thin films–I. Concepts," Mat. Res. Innovat. 1, 145–148, 1997.
[48] R Messier and A. Lakhtakia, "Sculptured thin films—II. Experiments and applications," Mat. Res. Innovat. 2, 217–222, 1999.
[49] C. Buzea, K. Kaminska, G. Beydaghyan, T. Brown, C. Elliott, C. Dean and K. Robbie, "Thickness and density evaluation for nanostructured thin films by glancing angle deposition," J. Vac. Sci. Technol. B 23, 2545, 2005.
[50] D-X Ye, T. Karabacak, B. K. Lim, G-C Wang and T-M Lu, "Growth of uniformly aligned nanorod arrays by oblique angle deposition with two-phase substrate rotation," Nanotechnology 15, 817–821, 2004.
[51] D-X Ye, T Karabacak, R C Picu, G-C Wang and T-M Lu, "Uniform Si nanostructures grown by oblique angle deposition with substrate swing rotation," Nanotechnology 16, 1717-1723, 2005.
[52] Y-J Jen and C-F Lin, "Anisotropic optical thin films finely sculptured by substrate sweep technology," Opt. Express 16, 5372-5377, 2008.
[53] M. O. Jensen and M. J. Brett, "Porosity engineering in glancing angle deposition thin films," Appl. Phys. A 80, 763–768, 2005.
[54] Goormaghtigh E, Raussens V and Ruysschaert J-M, "Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes," Biochim. Biophys. Acta. 1422, 105-185,1999.
論文全文使用權限:同意授權於2018-08-22起公開