現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:模糊遺傳演算法在橋梁耐震性能設計之應用與耐震維修補強生命週期成本最小化之研究 [以論文名稱查詢館藏系統]
論文英文名稱:Fuzzy-genetic Optimization on Performance-based Seismic Design and Study on Minimization of LCC in Seismic Retrofitting of the Bridges [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:工程科技研究所
出版年度:97
中文姓名:蘇進國
英文姓名:Chin-Kuo Su
研究生學號:93679002
學位類別:博士
語文別:中文
口試日期:2008-06-30
論文頁數:280
指導教授中文名:宋裕祺
口試委員中文名:蔡益超;張國鎮;黃震興;張荻薇;王仲宇;廖文義
中文關鍵詞:遺傳演算法耐震性能設計生命週期成本
英文關鍵詞:Genetic AlgorithmPerformance-Based DesignLife-Cycle-Cost
論文中文摘要:本研究旨在研擬一模糊遺傳演算法來處理具有限制條件之最佳化設計問題,並將其應用於以結構性能為基準之橋梁耐震性能設計。此外,本研究亦針對橋梁耐震維修補強之生命週期成本最小化分析提出具體的分析程序。
本研究以模糊理論控制遺傳演算法中的懲罰函數,有效求解含約束條件的最佳化問題。研究除建立一套模糊遺傳演算法之分析流程外,並具體開發相關應用分析程式,續以最佳化文獻刊載之數學函數和桁架最佳化設計等問題進行程式之驗證與探討。
為將模糊遺傳演算法成功應用於橋梁耐震性能最佳化設計之中,本研究先引用國內外相關研究機構所進行的十四組橋墩反覆載重實驗所得之容量曲線、三組橋墩反覆載重實驗所得之遲滯迴圈與兩組橋墩擬動態試驗成果等資料,進行橋梁耐震性能評估之研究,再繼以三組不同斷面形式的實驗成果,就文中所提模糊遺傳演算法應用於橋梁耐震性能設計之正確性進行驗證。在全橋耐震性能設計方面,為有效解決所需大量繁雜迭代分析之問題,本研究特別運用工程應用程式整合技術,克服SAP2000軟體未提供使用者進行批次分析之限制,成功調控SAP2000達到以結構性能為目標的全橋耐震性能設計。
最後,本研究以中性化鋼筋混凝土橋梁為對象,逐年分析材料時變效應下之橋墩塑性鉸性質,並藉由非線性靜態側推分析與改良式容量震譜法,分別獲得橋梁結構容量曲線–時間與各種不同損壞等級對應之地表加速度–時間等之關係,進而建立橋梁易損性曲線之時變特性。據此,橋梁各種不同損壞程度之機率時變關係及其對應之耐震維修或補強等生命週期成本最佳化分析即可完成,所得成果可供為橋梁最佳化管理決策制定之參考。
論文英文摘要:This paper, firstly, presents a fuzzy genetic optimization for performance-based seismic design (PBSD) of reinforced concrete (RC) bridge with single-column type piers. In the second place, a practical methodology are proposed to predict the life-cycle of the existing RC bridge and the crucial occasion to the necessary repairing or retrofitting for the neutralized bridges losing qualified performance.
To focus on the RC columns, fourteen results of cyclic loading test, three sets of experimental hysteresis loops and two varieties of pseudodynamic test were served as the materials for the necessary investigations on the performance-based seismic evaluation (PBSE). The results of the analysis show that the proposed approach would be well to predict nonlinear behaviors of RC columns and expected to facilitate the pushover analysis of the RC structure. After that, the PBSD method is modeled as a constrained optimization problem with the constraints of qualified structural capacity and suitable reinforcement arrangements for the designed RC pier. The structural capacity, represented by the structural force-displacement relation, obtained from the pushover analysis is required to satisfy the extreme case of multiple-level structural performances with respect to various earthquakes; the reinforcement arrangements is limited to the specification of the seismic design code. The fuzzy logic control (FLC), which adapts the penalty coefficients in the genetic algorithm (GA) as optimization solver, was employed to avoid a penalty that is too strong or too weak through the entire calculation so that a feasible solution can be obtained efficiently. The reported results of cyclic loading tests for three piers with squared section, rectangular section and circular section were employed as the data-base of investigation. Furthermore, a case study on the PBSD of a squared RC bridge pier with four required performance objectives (fully operational, operational, life safety and near collapse) was analyzed. Finally, the engineering application integration (EAI) technology was investigated to integrate with the proposed PBSD method and SAP2000 for accomplishing the purpose in PBSE of whole RC bridge system.
On the other hand, for existing reinforced concrete (RC) bridges, the structural performance is highly dependent on the changing properties of concrete and reinforcing steel due to neutralization-induced corrosion. To study the influence of neutralization on the existing RC bridges, the inspected data and test results collected from twenty-one bridges in Taiwan were examined to obtain the essential parameters through regression analyses. The regressive parameters related to service time can be employed in evaluating the variation of material and sectional properties in both reinforcements and concrete, and, accordingly, the change of structural performance from time to time could be obtained quantitatively via structural analysis. As a consequence, the performance degradation curve of an existing RC bridge is able to be predicted and, if necessary, the appropriate timing for repairing or retrofitting of it could be suggested.
This thesis combines GA with FLC to perform an optimization method for implementing the multiple performance objectives of RC columns in the PBSD. The relationships between structural performance and the service life are established successfully via a realistic procedure in evaluating the influence of concrete neutralization on RC concrete bridges in Taiwan. The results obtained could facilitate the PBSD of whole bridge system, analyzing the minimization of life-cycle cost for the neutralized RC bridges and enhance the functionality of bridge management system (BMS).
論文目次:目 錄

摘 要 i
ABSTRACT iii
誌 謝 v
目 錄 vii
表目錄 xv
圖目錄 xvii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 3
1.3 研究重點 4
1.4 論文組織與架構 5
第二章 文獻回顧 9
2.1 前言 9
2.2 遺傳演算法 9
2.2.1 遺傳演算法之演進 9
2.2.2 遺傳演算法之相關應用 12
2.2.2.1 遺傳演算法在桁架最佳化的應用 12
2.2.2.2 遺傳演算法在土木工程上的應用 17
2.2.2.3 混合遺傳演算法(HGA)的應用 23
2.2.2.4 遺傳演算法在其他領域的應用 27
2.3 結構物耐震性能評估與耐震性能設計 29
2.3.1 耐震性能基準的相關研究 30
2.3.1.1 美國 30
2.3.1.2 日本 32
2.3.1.3 台灣 33
2.3.2 結構耐震性能評估 33
2.3.3 結構耐震性能導向設計 35
2.4 橋梁工程生命週期成本與結構使用年限之分析 36
2.5 小結 38
第三章 模糊遺傳演算法 41
3.1 前言 41
3.2 遺傳演算法概述 42
3.2.1 遺傳演算法之基本概念 42
3.2.2 簡單遺傳演算法之運算過程 43
3.3 遺傳演算法各階段演算要點 45
3.3.1 編碼方法 45
3.3.1.1 二進制編碼方法 45
3.3.1.2 實數編碼方法 46
3.3.2 適應度函數 48
3.3.2.1 目標函數與適應度函數 48
3.3.2.2 適應度比例轉換 49
3.3.3 選擇 52
3.3.3.1 比例選擇法 52
3.3.3.2 精英策略選擇法 53
3.3.3.3 期望值選擇法 54
3.3.3.4 明確採樣選擇法 54
3.3.3.5 隨機餘數樣本選擇法 55
3.3.3.6 排序選擇法 56
3.3.3.7 隨機競賽選擇法 56
3.3.4 交配 56
3.3.4.1 單點交配 57
3.3.4.2 雙點與多點交配 58
3.3.4.3 均勻交配 60
3.3.4.4 算數交配 61
3.3.5 突變 62
3.3.5.1 簡單突變 63
3.3.5.2 均勻突變 64
3.3.5.3 非均勻突變 65
3.3.5.4 邊界突變 67
3.3.5.5 高斯突變 67
3.3.5.6 自適應性突變 68
3.4 遺傳演算法的重要控制參數與性能評估 69
3.4.1 遺傳演算法的重要控制參數 69
3.4.2 遺傳演算法的性能評估 71
3.5 具約束條件的遺傳演算法 73
3.5.1 搜尋區域限定法 74
3.5.2 可行解轉換法 74
3.5.3 懲罰函數法 76
3.6 以模糊控制理論為基礎的懲罰函數 77
3.6.1 模糊控制理論簡介 77
3.6.2 模糊化與隸屬度函數 78
3.6.3 模糊推論機制 84
3.6.4 解模糊化 87
3.6.5 模糊懲罰函數 89
3.7 遺傳演算系統、模糊控制系統與模糊遺傳演算系統 之程式開發 91
3.8 本文研發人工智慧系統之應用與驗證 94
3.8.1 遺傳演算法在無約束條件最佳化問題的應用 94
3.8.1.1 二進制編碼 94
3.8.1.2 實數編碼 98
3.8.2 模糊控制在倒立單擺問題的應用 100
3.8.3 具模糊懲罰函數之遺傳演算法在具約束條件問題的應用 106
3.8.3.1 數學求解問題 106
3.8.3.2 桁架結構最佳化設計問題 108
3.9 小結 119
第四章 模糊遺傳演算法在橋梁耐震性能設計上之應用 121
4.1 前言 121
4.2 容量震譜 122
4.2.1 需求震譜與正規化譜假加速度與譜位移關係 123
4.2.2 側推分析 128
4.2.3 塑性鉸分析與設定模式 131
4.3 單柱式鋼筋混凝土橋墩非線性行為之案例分析與探討 134
4.3.1 反覆載重實驗之容量曲線分析 134
4.3.2 遲滯迴圈路徑之比對分析 159
4.3.3 擬動態實驗之模擬分析 162
4.4 模糊遺傳演算法在鋼筋混凝土橋墩耐震性能設計上的運用 173
4.4.1 單柱式鋼筋混凝土橋墩耐震性能設計之最佳化模型 173
4.4.1.1 鋼筋混凝土橋墩之最佳化設計變數 173
4.4.1.2 設計目標與設計結果之評估 174
4.4.1.3 鋼筋混凝土橋墩耐震性能最佳化設計之限制條件與目標函數 175
4.4.1.4 以模糊懲罰函數進行鋼筋混凝土橋墩設計限制條件之運算 177
4.4.2 單柱式鋼筋混凝土橋墩耐震性能設計之理論驗證 181
4.4.2.1 方形鋼筋混凝土橋墩耐震性能設計結果 184
4.4.2.2 矩形鋼筋混凝土橋墩耐震性能設計結果 186
4.4.2.3 圓形鋼筋混凝土橋墩耐震性能設計結果 188
4.4.3 以結構性能為基準之鋼筋混凝土橋墩斷面設計與分析 190
4.5 以結構性能為基準之橋梁耐震性能最佳化設計 196
4.5.1 橋梁耐震性能最佳化設計之程式層級整合技術 197
4.5.2 橋梁耐震設計流程 198
4.5.3 實例分析ㄧ 201
4.5.3.1 案例說明 201
4.5.3.2 結構模擬與側推分析之設定 203
4.5.3.3 整體橋梁耐震性能目標之設定 204
4.5.3.4 SGA演算要點 205
4.5.3.5 CDTs與CDQs之比對 205
4.5.3.6 下部結構之設計 208
4.5.4 實例分析二 210
4.5.4.1 案例說明 210
4.5.4.2 整體橋梁耐震性能目標之設定 210
4.5.4.3 CDTs與CDQs之比對 213
4.5.4.4 下部結構之設計 216
4.6 小結 218
第五章 橋梁耐震維修補強之生命週期成本最佳化分析 221
5.1 前言 221
5.2 混凝土中性化深度非線性迴歸分析 222
5.3 混凝土中性化深度預測模式 223
5.4 中性化混凝土中的鋼筋?袘k量估計 224
5.4.1 鋼筋瞬間?袘k速率的量測 224
5.4.2 混凝土中性化殘量與鋼筋開始?袘k時間之推算 225
5.4.3 鋼筋?袢?致混凝土保護層開裂前之鋼筋?袘k深度預測模式 226
5.5 混凝土中性化對鋼筋混凝土構材力學之影響 227
5.5.1 中性化混凝土的強度變化 227
5.5.2 混凝土之有效斷面 227
5.5.3 ?袘k鋼筋之降伏強度 228
5.6 橋梁易損性曲線時變特性之建立 228
5.7 案例分析與探討 231
5.7.1 橋梁結構基本資料 231
5.7.2 橋柱彎矩塑性鉸之時變曲線 231
5.7.3 振動單元基底剪力之時變曲線 233
5.7.4 橋梁易損性曲線之時變曲線 235
5.7.5 橋梁耐震維修補強之生命週期成本評估 236
5.8 以模糊遺傳演算法進行全橋耐震設計之生命週期成本分析與探討 240
5.8.1 橋柱彎矩塑性鉸之時變曲線 240
5.8.2 基底剪力之時變曲線 242
5.8.3 橋梁易損性曲線之時變曲線 243
5.8.4 橋梁耐震維修補強之生命週期成本評估 245
5.9 小結 246
第六章 結論與建議 249
6.1 結論 249
6.2 建議 252
參考文獻 255
作者簡歷 275
論文參考文獻:參考文獻

[1] AASHTO, Standard Specifications for Highway Bridges, 17th Ed., 2002.
[2] A. Brindle, Genetic Algorithm for Function Optimization, Ph.D Dissertation, University of Alberta, 1981.
[3] ACI Committee 318, Building code requirements for reinforced concrete and commentary (ACI 318-05), American Concrete Institute, Farmington Hill, 2005, USA.
[4] A. Kaveh and V. Kalatjari, “Topology optimization of trusses using genetic algorithm, force method and graph theory,” International Journal for Numerical Methods in Engineering, Vol. 58, 2003, pp.771-791.
[5] ATC-32, Improved Seismic Design Criteria for California Bridges: Provisional recommendations, Applied Technology Council, Redwood City, California , 1996.
[6] ATC-40, Seismic Evaluation and Retrofit of Concrete Building, Applied Technology Council, Redwood City, California, 1996.
[7] ATC-58, Next-Generation Performance-Based Seismic Design Guidelines: Program Plan for New and Existing Buildings, Applied Technology Council, Redwood City, California, 2006.
[8] B. P. Wang and J. L. Chen, “ Application of genetic algorithm for the support location optimization of beam,” Journal of Computers and Structures, Vol. 58, No. 4, 1996, pp.797-800.
[9] C. Camp, S. Pezeshk and G. Cao, “Optimized design of two-dimensional structures using a genetic algorithm,” Journal of Structural Engineering, Vol. 124, No. 5, 1998, pp.551-559.
[10] C. Jeffrey and J. Lagarias, “Convergence properties of the nelder-mead simplex method in low dimensions,” Siam J. Optim., Vol. 9, No. 1, 1998, pp. 112-147.
[11] C. K. Lee and S. K. Kim, “GA-based algorithm for selecting optimal repair and rehabilitation methods for reinforced concrete (RC) bridge decks,” Journal of Automation in Construction, Vol. 16, 2007, pp. 153-164.
[12] C. K. P. V. Thampan and C. S. Krishnamoorthy, “System reliability-based configuration optimization of trusses,” Journal of Structural Engineering, Vol. 127, No. 8, 2001, pp.947-956.
[13] C. K. Soh and J. Yang, “Fuzzy controlled genetic algorithm search for shape optimization,” Journal of Computing in Civil Engineering, Vol. 10, No. 2, 1996, pp.143-150.
[14] C. K. Su, Y. C. Sung , I. C. Tsai, S. Y. Chang, “A Novel Approach to Seismic Evaluation of Existing Reinforced Concrete Bridges,” the 18 th KKCNN Symposium on Civil Engineering, December 9-21, 2005, Kaoushiung, Taiwan.
[15] C. K. Su, Y. C. Sung, S. Y. Chang and C. H. Huang, “Analytical investigations of seismic responses for reinforced concrete bridge columns subjected to strong near-fault ground motion” , Earthquake Engineering and Engineering Vibration, Vol.6, No.2 , 2007, pp.237-244
[16] CSI, SAP2000:Integrated Finite Element Analysis and Design of Structures, Computers and Structures ,Inc., Berkeley, California, 1996.
[17] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, 1989.
[18] D. M. Peng and C. A. Fairfield, “Optimal design of arch bridges by integrating genetic algorithms and the mechanism method,” Journal of Engineering Structures, Vol. 21, 1999, pp. 75-82.
[19] D. W. Coit and A. E. Smith, “Solving the redundancy allocation problem using a combined neural network/genetic algorithm approach,” Computers Ops. Res., Vol. 23, No. 6, 1996, pp. 515-526
[20] E. Miranda and J. R. Garcia, “Evaluation of approximate methods to estimate maximum inelastic displacement demands” , Earthquake Engineering & Structural Dynamics, Vol. 31, 2001, pp. 539-560.
[21] E. Miranda and J. R. Garcia, “Inelastic displacement ratios for evaluation of existing structures” , Journal of Engineering Structures, Vol. 24, 2002, pp. 1271-1281.
[22] E. S. Kameshki and M. P. Saka, “Optimum design of nonlinear steel frames with semi-ridig connections using a genetic algorithm,” Journal of Computers and Structures, Vol. 79, 2001, pp. 1593-1604.
[23] FEMA 273, NEHRP Guidelines for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington, 1997, D.C.
[24] FEMA 274, NEHRP Guidelines for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington, 1997, D.C.
[25] F. Naeim, Ph.D., S.E. Director of Research and Development ,John A. Martin & Associates, Inc. Los Angeles, California .
[26] F. Y. Kocer and J. S. Arora, “Optimal design of latticed towers subjected to earthquake loading,” Journal of Structural Engineering, ASCE, Vol. 128, No. 2, 2002, pp. 197-204.
[27] G. M. Saggiani, G. Caligiana and F. Persiani, “Multiobjective wing design using genetic algorithms and fuzzy logic,” Proceedings of the Institution of Mechanical Engineers, Vol. 218, No. 2, 2004, pp.133-145.
[28] Goldberg D E. Genetic Algorithms in search, Optimization and Machine Learning, Addison-Wesley, 1989.
[29] G. Syswerda, “Uniform Crossover in Genetic Algorithm,” In: Proc. Of 3rd Int. Conf. on Genetic Algorithm, Morgan Kaufmann, 1989.
[30] H. Adeli and S. Kumar, “Distributed genetic algorithm for structural optimization,” J. of Aerospace Engineering, Vol. 8, No. 3, 1995, pp. 156-163.
[31] H. Adeli, and N. T. Cheng, ‘‘Augmented Lagrangian genetic algorithm for structural optimization.’’ J. Aerosp. Engrg., ASCE, Vol. 7, No. 1, 1994, pp. 104–118.
[32] H. S. Kim and P. N. Roschke, “Design of fuzzy logic controller for smart base isolation system using genetic algorithm,” Journal of Engineering Structures, Vol. 28, 2006, pp. 84–96.
[33] H. Takemura and K. Kawashima, “Effect of loading hysteresis on ductility capacity of reinforced concrete bridge piers” ,Journal of Structural Engineering, 1997, Vol. 43A, pp.849-858, Japan.
[34] I. K. Jeong and J. J. Lee, “Adaptive simulated annealing genetic algorithm for system identification,” Engng Applic. Artif. Intell., Vol. 9, No. 5, 1996, pp. 523-532.
[35] International Code Council, 2000 International Building Code, Falls Church, Va., 2000.
[36] J. A. Mahaney, S. A. Freeman, T. F. Paret and B. E. Kehoe, “The Capacity Spectrum Method of Evaluation Structural Response During the Loma Prieta Earthquake”, Proc. National Earthquake Conference,1993,pp.501-510, Memphis.
[37] Japan Society of Civil Engineers, Cyclic loading test data of reinforced concrete bridge piers, Ductility Design Subcommittee, Earthquake Engineering Committee, 2001, Tokyo.
[38] J. Crank, The Mathematics of Diffusion, Oxford science, UK, 1975.
[39] J. H. Chou and J. Ghaboussis, “Genetic algorithm in structural damage detection,” Journal of Computers and Structures, Vol. 79, 2001, pp.1335-1353.
[40] J. H. Holland, Adaptation in Natural and Artificial System, University of Michigan Press, Ann Arbor, Mich., 1975.
[41] J. J. Grefenstette, “Optimization of control parameters for genetic algorithms”, IEEE Transaction on Systems, Man, and Cybernetics, Vol. 16, No. 1, pp. 122~128, 1986.
[42] J. Lee, S. M. Kim, H. S. Park and B. H. Wood, “Optimum design of cold-formed steel channel beams using micro Genetic Algorithm,” Journal of Engineering Structures, Vol. 27, 2005, pp. 17-24.
[43] J. Lee, S. M. Kim and H. S. Park, “Optimum design of cold-formed steel columns by using micro genetic algorithms,” Journal of Thin-Walled Structures, Vol. 44, 2006, pp. 952–960.
[44] J. Yang and C. K. Soh, “Structural optimization by genetic algorithm with tournament selection,” Journal of Computing in Civil Engineering, Vol. 11, No. 3, 1997, pp.195-200.
[45] K. A. D. Jong, An Analysis of the Behavior of a Class of Genetic Adaptive Systems. Ph.D Dissertation, University of Michigan, No. 76-9381, 1975.
[46] Kawashima Research Group, http://seismic.cv.titech.ac.jp/en/ , Cyclic Loading Test Data of Reinforced Concrete Bridge Piers, Japan.
[47] K. C. Fu, Y. Zhai and S. Zhou, “Optimum design of welded steel plate girder bridges using a genetic algorithm with elitism,” Journal of Bridge Engineering, ASCE, Vol. 10, No. 3, 2005, pp.291-301.
[48] K. C. Sarma and H. Adeli, “Fuzzy genetic algorithm for optimization of steel structures,” Journal of Structural Engineering, Vol. 126, No. 5, 2000, pp.596-604.
[49] K. J. Kim and I. Han, “Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index,” Expert Systems with Applications, Vol. 19, 2000, pp. 125–132.
[50] K. Kawashima, G. Shoji and Y. Sakakibara, “A cyclic loading test for clarifying the plastic hinge length of reinforced concrete piers,” Journal of Structural Engineering, Vol. 46A, pp. 767-776, Japan.
[51] K. Kawashima and M. Nagai, “Development of reinforced concrete piers with rubber layer in the plastic hinge region,” http://seismic.cv.titech.ac.jp/en/, Tokyo Institute of Technology, Tokyo, Japan.
[52] K. M. Passino and S.Yurkovich, Fuzzy control, Ohio:Addison-Wesley Longman, Inc., 1998.
[53] K. Nagaya and K. Kawashima, “Effect of aspect ratio and longitudinal reinforcement diameter on seismic performance of reinforced concrete bridge columns,” http://seismic.cv.titech.ac.jp/en/, Tokyo Institute of Technology, 2001, Tokyo, Japan.
[54] K. Yoneda, K. Kawashima and G. Shoji, “Seismic Retrofit of circular reinforced bridge columns by wrapping of carbon fiber sheets,” http://seismic.cv.titech.ac.jp/en/, Tokyo Institute of Technology, Tokyo, Japan.
[55] L. B. Booker, D. E. Goldberg, J. H. Holland, “Classifier Systems and Genetic Algorithm,” Artificial Intelligence, Vol. 40, pp.135~282, 1989.
[56] M. A. Rao, J. Srinivas and B. S. N. Murthy, “Damage detection in vibrating bodies using genetic algorithms,” Journal of Computers and Structures, Vol. 82, 2004, pp. 963-968.
[57] M. Aschheim and E. F. Black, “Yield Point Spectrum for Seismic Design and Rehabilitation,” Earthquake Spectra, Vol. 16(2), 2000, pp. 317-336.
[58] M. B. P. Gero, A. B. Garcia and J. J. D. C. Diaz, “Design optimization of 3D steel structures: Genetic algorithms vs. classical techniques,” Journal of Constructional Steel Research, Vol. 62, 2006, pp.1303-1309.
[59] M. B. P. Gero, A. B. García and J. J. D. C. Díazb, “A modified elitist genetic algorithm applied to the design optimization of complex steel structures,” Journal of Constructional Steel Research, Vol. 61, 2005, pp. 265-280.
[60] M. G. Sahab, A. F. Ashour and V. V. Toropov, “A hybrid genetic algorithm for reinforced concrete flat slab buildings,” Journal of Computers and Structures, Vol. 83, 2005, pp.551-559.
[61] M. H. Lim, Y. Yuan and S. Omatu, “Extensive testing of a hybrid genetic algorithm for solving quadratic assignment problems,” Journal of Computational Optimization and Applications, Vol. 23, No. 1, 2002, pp.47-64.
[62] M. I. Friswell, J. E. T. Penny and S. D. Garvey, “A combined genetic and eigensensitivity algorithm for the location of damage in structures,” Journal of Computers and Structures, Vol. 69, 1998, pp.547-556.
[63] M. Leps and M. Sejnoha, “New approach to optimization of reinforced concrete beams,” Journal of Computers and Structures, Vol. 81, 2003, pp. 1957-1966.
[64] M. Ohsaki, “Genetic Algorithm for Topology Optimization of Trusses,” Journal of Computer and Structures, Vlo. 57, No. 2, 1995, pp. 219-225.
[65] M. R. Attalla, G. G. Deierlein and McGuire, “Spread of Plasticity Quasi -Plastic-Hinge Approach,” Journal of Structural Engineering, ASCE, 1994, Vol. 120, No. 8, pp. 2451-2473.
[66] M. S. Hayalioglu and S. O. Degertekin, “Minimum cost design of steel frames with semi-rigid connections and column bases via genetic optimization,” Journal of Computers and Structures, Vol. 83, 2005, pp. 1849-1863.
[67] M. Y. Rafiq and C. Southcombe, “Genetic algorithms in optimal design and detailing of reinforced concrete biaxial columns supported by a declarative approach for capacity checking,” Journal of Computers and Structures, Vol. 69, 1998, pp. 443-457.
[68] N. Ali, K. Behdinan, Z. Fawaz, “Applicability and viability of a GA based finite element analysis architecture for structural design optimization,” Journal of Computer and Structures, Vol. 81, 2003, pp.2259-2271.
[69] N. M. Newmark, W. J. Hall, Earthquake Spectra and Design. Illinois: Earthquake Engineering Research Institute, Department of Civil Engineering, University of Illinois, 1982.
[70] N. Turkkan, “Discrete optimization of structures using a floating point genetic algorithm,” Annual Conference of the Canadian Society for Civil Engineering, June 4-7, 2003, GCM-134-1~8, Canada.
[71] N. Wongprasert and M. D. Symans, “Application of a genetic algorithm for optimal damper distribution within the nonlinear seismic benchmark building,” Journal of Engineering Mechanics, Vol. 130, No. 4, 2004, pp. 401-406.
[72] O. Kelesoglu, “Fuzzy multiobjective optimization of truss-structures using genetic algorithm,” Journal of Advances in Engineering Software, Vol. 38, 2007, pp. 717–721.
[73] PEER Testbeds, “http://www.peertestbeds.net/index.htm,” The Pacific Earthquake Engineering Research Center home page.
[74] P. Kripakaran, A. Gupta and J. W. Baugh, “A novel optimization approach for minimum cost design of trusses,” Journal of Computers and Structures, Vol. 85, 2007, pp.1782-1794.
[75] P. M. Pardalos, I. Tseveendorj, and R. Enkhbat, Optimization and Optimal Control, World Scientific Publishing Co. Pte. Ltd., Singapore, 2003.
[76] P. Nanakorn and K. Meesomklin, “An adaptive penalty function in genetic algorithms for structural design optimization,” Journal of Computers and Structures, Vol. 79, 2001, pp.2527-2539.
[77] P. Riva and M. Z. Cohn, “Engineering Approach to Nonlinear Analysis of Concrete Structures,” Journal of Structural Engineering, ASCE, 1989, Vol. 116, No. 8, pp. 2162-2186.
[78] P. Sivakumar, A. Rajaraman, G. M. Samuel Knight and D. S. Ramachandramurthy, “Object-oriented optimization approach using genetic algorithms for lattice towers,” Journal of Computing in Civil Engineering, ASCE, Vol. 18, No. 2, 2004, pp. 162-171.
[79] Q. Xue and C. W. Wu, “Preliminary detailing for displacement-based seismic design of buildings”, Journal of Engineering Structures, Vol. 28 No. 3, 2006, pp. 431–440.
[80] R. L. Haupt and S. E. Haupt, Practical Genetic Algorithm, 2nd edition, John Wiley & Sons, Inc., Hoboken, New Jersey, 2004.
[81] R. Ouarghi and M. Krarti, “Building Shape Optimization Using Neural Network and Genetic Algorithm Approach,” ASHRAE Transactions, Vol. 112, 2006, pp. 484-491.
[82] R. Weare, E. Burke and D. Elliman, “A hybrid genetic algorithm for highly constrained timetabling problems,” Computer Science Technical Report No. NOTTCS-TR-1995-8, 1995, University of Nottingham, UK.
[83] S. A. Freeman, “Development and Use of Capacity Spectrum Method”, Proceedings of 6th U.S. National Conference on Earthquake Engineering, Seattle, EERI, Oakland, California,1998.
[84] S. Ahlawat and A. Ramaswamy, “Multiobjective optimal fuzzy logic control system for response control of wind-excited tall buildings,” Journal of Engineering Mechanics, ASCE, Vol. 130, No.4, 2004, pp. 524-530.
[85] S. D. Rajan, “Sizing, shape, and topology design optimization of trusses using genetic algorithm,” Journal of Structural Engineering, Vol. 121, No. 10, 1995, pp.1480-1487.
[86] SEAOC Vision 2000 Committee, VISION 2000-Performance- Based Seismic Engineering of Buildings, 1995.
[87] S. F. Hwang and R. S. He, “A hybrid real-parameter genetic algorithm for function optimization,” Journal of Advanced Engineering Informatics, Vol. 20, 2006, pp. 7–21.
[88] S. Ganzerli and M. F. Burkhart, “Genetic algorithms for optimal structural design using convex models of uncertainties.” Proceedings of the CSM4, Fourth International Conference on Computational Stochastic Mechanics, Kerkyra (Corfu), Greece. June 9-12, 2002, pp. 207-214.
[89] S. H. Wu and P. T. Chow, “Steady-state genetic algorithms for discrete optimization of trusses,” Journal of Computer and Structures, Vol. 56, No.6, 1995, pp.979-991.
[90] S. Nagendra, Z. Jestin, R. T. Haftka and L. T. Watson, “Improved genetic algorithm for the design of stiffened composite panels,” Journal of Computers and Structures, Vol. 58, No. 3, 1996, pp. 543-555.
[91] S. Pezeshk, C. V. Camp and D. Chen, “Design of nonlinear frame structures using genetic optimization,” Journal of Structural Engineering, Vol. 126, No. 3, 2000, pp.382-388.
[92] S. Pourzeynali, H. H. Lavasani and A. H. Modarayi, “Active control of high rise building structures using fuzzy logic and genetic algorithms,” Journal of Engineering Structures, Vol. 29, 2007, pp. 346–357.
[93] S. Rajeev and C. S. Krishnamoorthy, “Discrete optimization of structures using genetic algorithms”, Journal of Structural Engineering, Vol. 119, No. 8, 1992, pp.2494-2496.
[94] S. Rajeev and C. S. Krishnamoorthy, “Genetic algorithms-based methodologies for design optimization of trusses”, Journal of Structural Engineering, Vol. 123, No. 3, 1997, pp.350-358.
[95] S. Y. Chang, “Application of the momentum equations of motion to pseudodynamic testing,” Philos. Trans. R. Soc. London, Ser. A, 359(1786), 2001, pp. 1801–1827.
[96] S. Y. Chang, “An improved on-line dynamic testing method,” Eng. Struct., 24(5), 2002, pp.587–596.
[97] S. Y. Chen and S. D. Rajan, “Using genetic algorithm as an automatic structural design tool, ” Short Paper Proceedings of 3rd World Congress of Structural and Multidisciplinary Optimization, Vol. 1, 1999, pp263-265, Buffalo, NY.
[98] T. Back, “The Interaction of Mutation Rate, Selection and Self-Adaptation within a Genetic Algorithm,” In Parallel Problem from Nature, North Holland, pp.84-94, 1992.
[99] T. Bäcker and H. Schwefel, “An overview of evolution algorithm for papameter optimizations,” Evolutionary Computation, Vol. 1, no. 1, pp.1~23, 1993.
[100] T. White, B. Pagurek and F. Oppacher, “ASGA: Improving the Ant System by Integration with Genetic Algorithms,” Proceedings of the Symposium on Genetic Algorithms (SGA '98), 1998, pp. 610-617.
[101] T. Yokota, T. Taguchi and M. Gen, “A Solution Method for Optomal Weight Design Problem of 10 Bar Truss Using Genetic Algorithms,” J. Computers ind. Engng, Vol.35, No.1-2, 1998, pp.367-372.
[102] V. Govindaraj and J. V. Ramasamy, “Optimum detailed design of reinforced concrete continuous beams using Genetic Algorithms,” Journal of Computers and Structures, Vol. 84, 2005, pp. 34-48.
[103] V. G. Papadakis, C. G. Vayenas et al., “Physical and chemical characteristics affecting the durability of concrete”, ACI Materials Journal, Vol. 88, 1991, pp. 186-196.
[104] V. Srinivas and K. Ramanjaneyulu, “An integrated approach for optimum design of bridge decks using genetic algorithms and artificial neural networks,” Journal of Advances in Engineering Software, Vol. 38, 2007, pp. 475-487.
[105] V. Togan and A. T. Daloglu, “Optimization of 3d trusses with adaptive approach in genetic algorithms,” Journal of Engineering Structures, Vol. 28, 2006, pp.1019-1027.
[106] W. Lu and P. Makelainen, “Fuzzy optimization of cold-formed steel sheeting using genetic algorithms,” Journal of Constructional Steel Research, Vol. 62, 2006, pp. 1276–1281.
[107] X. T. Feng and C. Tang, “Genetic algorithm of nonlinear material constitutive models,” Journal of Computer Methods in Applied Mechanics and Engineering, Vol. 190, 2001, pp.5957-5973.
[108] Y. C. Sung, C. H. Wang, C. K. Su, K. Y. Liu, B. C. Gau, “Life Cycle Assessment of Neutralized Reinforced Concrete Bridges in Taiwan,” The Tenth East Asia-Pacific Conference on Structural Engineering and Construction (EASEC-10), 3-5 August 2006, Bankok, Thailand.
[109] Y. C. Sung, C. K. Su and M. C. Lai, K. Y. Liu, “Durability Analysis of Neutralized Reinforced Concrete Bridges in Taiwan,” The 8th Pacific Conference on Earthquake Engineering, Paper No.61, Dec 5-7,2007, Singapore.
[110] Y. C. Sung, C. K. Su, “Seismic Evaluation of Existing Bridges:Theory And Application,” International Training Program for Seismic Design of Structures, National Center For Research on Earthquake Engineering, October 26, 2005, Taipei, Taiwan.
[111] Y. C. Sung, C. K. Su, C. W. Wu, and I. C. Tsai, “Performance-Based Damage Assessment of Low-Rise Reinforced Concrete Buildings”, Journal of the Chinese Institute of Engineers, Vol. 29, No. 1, Jan., 2006, pp.51~62 .
[112] Y. C. Sung, I. C. Tsai, “A new approach to performance-based seismic evaluation for bridges,” Proceedings of the 3 rd International Workshop on Performance-Based Seismic Design and Retrofit of Transportation Facilities, 2002, Tokyo.
[113] Y. C. Sung, I. C. Tsai, “Displacement-based seismic design using yield point spectrum,” Asian-Pacific Symposium on Structural Reliability and its Application, 2003, Taipei.
[114] Y. C. Sung , K. C. Chang , I. C. Tsai, S. Y. Chang, K. Y. Liu, and C. K. Su, “A Novel Prediction of the Seismic Responses for Reinforced Concrete Bridge Columns,” Proceedings of the 4 th International Workshop on Performance-Based Seismic Design and Retrofit of Transportation Facilities, March 13 and 14, 2006, San Francisco, CA .
[115] Y. C. Sung, K. Y. Liu, C. K. Su, I. C. Tsai, and K. C. Chang, “A Study on Pushover Analyses of Reinforced Concrete Columns,” Journal of Structural Engineering and Mechanics, Vol. 21, No. 1, 2005, pp.35~52.
[116] Y. C. Sung, T. W. Lin, I. C. Tsai, S. Y. Chang and M. C. Lai, “Application of Normalized Spectral Acceleration- Displacement (NSAD) Format on Performance-Based Seismic Design of Bridge Structures”, Journal of Mechanics ,Vol. 23, 2007, pp. 86-93.
[117] Y. He and A. J. Aref, “An optimization design procedure for fiber reinforced polymer web-core sandwich bridge deck systems,” Journal of Composite Structures, Vol. 60, 2003, pp. 183-195.
[118] Y. P. Huang and C. H. Huang, “Real-valued genetic algorithms for fuzzy grey prediction system,” Journal of Fuzzy Sets and Systems, Vol. 87, 1997, pp.265-276.
[119] Z. Michalewicz, Genetic Algorithms + Data Structure = Evolution Programs, Springer-Verlag, Berkin, 1992.
[120] Z. Michalewicz, “A Modified Genetic Algorithm for Optimal Control Problems,” Computers Math. Application, Vol.23, pp.83~94, 1992.
[121] 丁建立,陳增強,元著祉,「遺傳算法與螞蟻算法的融合」,計算機研究與發展,第四十卷,第九期,2003,第1531-1536頁。
[122] 王文俊,認識Fuzzy,台北:全華科技圖書股份有限公司,2003。
[123] 王傳輝,台灣地區鋼筋混凝土橋中性化效應之耐久性評估,國立台北科技大學土木與防災研究所碩士論文,台北,2005。
[124] 日本道路協會,道路橋示方書同解說¬-耐震設計編,東京:丸善株式會社,2002。
[125] 日本鐵道總合技術研究所,鐵道構造物等設計標準同解說¬-耐震設計,東京:丸善株式會社,1999。
[126] 牛荻濤,混凝土結構耐久性與壽命預測,科學出版社,2003。
[127] 台灣省政府交通處公路局,橋梁工程標準圖–重力式橋墩‧懸臂式橋墩‧剛架式橋墩,1985。
[128] 台灣省政府交通處公路局,橋梁工程標準圖–預力混凝土簡支梁橋(PCI型梁橋),1991。
[129] 台灣省政府交通處公路局,橋梁橋梁安全檢測報告,1998。
[130] 玄光男,程潤偉,于歆杰,周根貴,遺傳算法與工程優化,北京:清華大學出版社,2003。
[131] 交通部,公路橋梁耐震設計規範,台北:幼獅出版社,民國84年1月。
[132] 交通部,公路橋梁耐震設計規範複審成果報告書,台北:中華顧問工程司,民國92年3月。
[133] 交通部台灣區國道高速公路局,公路橋梁耐震設計規範修訂草案之研究,交通部,民國95年十二月。
[134] 佐伯竜彥,コソクリートの中性化および中性化に伴う劣化の進行予測に関する基礎的研究,1990。
[135] 李士勇,陳永強,李研,蟻群算法及其應用,哈爾濱:哈爾濱工業大學出版社,2004。
[136] 李田,劉西拉,混凝土結構耐久性分析與設計,科學出版社, 1999。
[137] 李剛,程耿東,基於性能的結構抗震設計-理論、方法與應用,科學出版社,北京,2004。
[138] 李敏強、寇紀淞、林丹和李書全,遺傳算法的基本理論與應用,北京:科學出版社,2002。
[139] 宋裕祺,以結構性能為目標的橋樑耐震設計與耐震能力評估,國立臺灣大學土木工程學研究所博士論文,民國92年。
[140] 宋裕祺,蔡益超,「以結構性能為目標的鋼橋耐震能力評估法」,中國土木水利工程學刊,第十四卷,第四期,2002,第603-615頁。
[141] 宋裕祺,蔡益超,「以結構性能為目標的鋼筋混凝土橋耐震能力評估」,中華技術,2003,第58期。
[142] 宋裕祺,以結構性能為目標的橋梁耐震設計與耐震能力評估,國立臺灣大學土木工程學研究所博士論文, 2003,台北。
[143] 宋裕祺,劉光晏,蘇進國,蔡益超,張國鎮,「鋼筋混凝土柱側推分析之研究與探討」,中華民國建築學會建築學報,第46期,2004,pp.47~65。
[144] 宋裕祺,蘇進國,許銘仁,「鋼筋混凝土橋柱之分析與探討」,中華民國第八屆結構工程研討會論文摘要集,南投日月潭,2006。
[145] 宋裕祺,蘇進國,吳傳威,蔡益超,「以結構性能為基準之鋼筋混凝土建築物耐震能力評估」,中華民國建築學會建築學報,第50期,2004,pp.35~47。
[146] 宋裕祺,張順益,蘇進國,許家銓,「鋼筋混凝土橋柱在近斷層地震作用下之反應分析與實驗驗證 」,九十四年電子計算機於土木水利工程應用研討會,成功大學,台南,2005。
[147] 宋裕祺,蘇進國,「建築結構耐震能力評估法之分析要點與示範例」,鋼筋混凝土建築耐震能力評估研討會論文集,2006。
[148] 宋裕祺,葉祥海,蔡益超,謝尚賢,盧明德,蘇進國,賴明俊,「鋼筋混凝土牆、磚牆塑鉸設定與含牆建築物耐震能力評估之研究」,中華民國建築學會建築學報,第 62 期,2007,第81-98頁。
[149] 宋裕祺,蔡益超,「橋梁結構性能耐震設計」,結構工程,第十九卷,第一期,2004,第41-73頁。
[150] 宋裕祺,張國鎮,劉光晏,蘇進國,賴明俊,「既有混凝土橋梁結構耐震性能與生命週期之研究」,台灣混凝土學會2007年混凝土工程研討會,台北,2007。
[151] 宋裕祺,劉光晏,蘇進國,賴明俊,「既有混凝土橋梁結構耐震性能生命週期之研究」,第五屆公共工程非破壞檢測技術研討會,台北,2007。
[152] 宋裕祺,蘇進國,劉光晏,蔡益超,「橋梁耐震維修補強之生命週期成本最佳化分析」,公路橋梁耐震能力評估及補強工程技術研討會,國家地震工程研究中心,台北,2008,第161-173頁。
[153] 吳明哲,生命週期導向橋梁改善策略最佳化評選模式之研究,國立中央大學營建管理研究所碩士論文,2004。
[154] 吳瑞龍,張荻薇,張國鎮,黃炳勳,「橋梁耐震補強之新思維 」,公路橋梁耐震能力評估及補強工程技術研討會,國家地震工程研究中心,台北,2008。
[155] 岸谷孝一等,「コソクリート中の鉄筋腐蝕に關する研究」,日本建築學會構造系論文集,Vol. 406,1989,pp.1-12.
[156] 林正修,合乎台灣本土地震特性之單自由度等值線性系統之建立及其應用,國立台北科技大學土木與防災研究所碩士論文,民國94年。
[157] 林維明,「鋼筋混凝土中性化之探討」,結構工程,第九卷,第一期,1994,第103-115頁。
[158] 周明,孫树棟,遺傳演算法原理及應用,北京:國防工業出版社,1999。
[159] 施建志,「混凝土結構的腐蝕檢測及防蝕維修技術」,土木技術,第一卷,第五期,1998,第82-101頁。
[160] 徐善華等,「鋼筋混凝土結構的碳化耐久性分析」,建築技術開發,2002。
[161] 唐煥文,秦學志,實用最優化方法(Practical Methods of Optimization),大連:大連理工大學出版社,2004。
[162] 翁元滔,建築結構多振態耐震性能評析與位移導向設計法的研究,國立台灣大學土木工程研究所博士論文,2003。
[163] 財團法人臺灣營建研究院,橋梁結構使用年限建立應用手冊(草案),交通部,台北,2003。
[164] 孫宗瀛、楊英魁,Fuzzy控制理論、實作與應用,台北:全華科技圖書股份有限公司,2003。
[165] 鳥取誠一,宮川豐章,「中性化の影響を受ける場合の鉄筋腐食に関する劣化予測」,土木學會論文集,第64卷,第767期,2004。,第35-46頁
[166] 陳俊志,蘇進國,宋裕祺,黃震興,「鋼筋混凝土構架振動台試驗成果之分析與驗證」,中華民國第八屆結構工程研討會論文,南投日月潭,2006。
[167] 陳威廷,生命週期導向橋梁評估系統之研究,國立中央大學營建管理研究所碩士論文,2003。
[168] 張又升,建築物生命週期二氧化碳減量評估,國立成功大學建築研究所博士論文,2002。
[169] 張國鎮,蔡益超,宋裕祺 ,劉光晏,「公路橋梁耐震性能設計規範之研議」,結構工程,第二十一卷,第三期,2006,第85-115頁。
[170] 張國鎮、張宏輔,鋼筋混凝土橋柱耐震分析與FRP補強之研究,國家地震工程研究中心,1999,報告編號:NCREE-99-030。
[171] 張荻薇,宋裕祺,黃炳勳,戚樹人,「側推分析應用於橋梁耐震評估實例之探討」,台灣混凝土學會2007年混凝土工程研討會,2007,台北。
[172] 張譽,蔣利學,張偉平,屈文俊等,混凝土結構耐久性概論,上海科學技術出版社,2003。
[173] 連夷佐,橋梁維護管理生命週期成本評估模式之研究,國立中央大學營建管理研究所碩士論文,2003。
[174] 許文政,橋梁生命週期成本評估構件劣化預測模式之研究,國立中央大學營建管理研究所碩士論文,2005。
[175] 許鎧麟等,生命週期成本導向之橋梁設計研究(2/2),交通部,2004。
[176] 梁明德,洪照亮,梁智信,「既有鋼筋混凝土結構物在碳化誘發腐蝕下預測使用壽命」,中國土木水利工程學刊,第十一卷,第三期,1999,第485-492頁。
[177] 魚本健人,高田良章,「コンクリートの中性化速度に及ぼす要因」,土木学会論文集,第四十七卷,第451期,1992,第119-128頁。
[178] 馮玉杰,李曉岩,尤宏,丁凡,電化學技術在環境工程中的應用,化學工業出版社,2002。
[179] 黃榮堯、許鎧麟、廖肇昌、王仲宇、陳純敬、顏上境、張國鎮、李俊憲、謝斌麒、吳伋,橋梁生命週期成本評估方法與結構使用年限之建立(1/2),交通部,台北,2003。
[180] 黃榮堯、許鎧麟,橋梁生命週期成本評估方法與結構使用年限之建立(2/2),交通部,台北,2003。
[181] 黃然,陳君弢,「混凝土中性化機理、試驗方法及預測模式之探討」,土木技術,第一卷,第七期, 1998,第133-139頁。
[182] 隋允康、龙連春,智能桁架結構最優控制方法與數值模擬,北京:科學出版社,2006。
[183] 詹紹瑋,橋梁設施生命週期維護預算評估與分配最適化之研究,國立雲林科技大學營建工程系碩士論文,2006。
[184] 楊英魁、孫宗瀛、鄭魁香、林建德、蔣旭堂,模糊控制理論與技術,台北:全華科技圖書股份有限公司,2002。
[185] 潘玉華,李漢貞,趙大衛,遺傳學(Principles of genetics),台北:中國書局,中華民國72年。
[186] 蔡益超、張國鎮、張荻薇、宋裕祺,鐵路橋梁耐震設計規範修訂草案之研究,台北:交通部高速鐵路工程司,民國93年。
[187] 蔡益超,宋裕祺,謝尚賢,建築物耐震評估法之修訂及視窗化研究,內政部建築研究所,2005。
[188] 蔡益超,宋裕祺,謝尚賢,鋼筋混凝土建築物耐震能力評估之案例示範,內政部建築研究所,2006。
[189] 劉光晏,橋梁功能性支承系統耐震性能設計與評估補強方法之研究,國立 台灣大學土木工程學研究所博士論文,民國95年。
[190] 劉勇、康立山、陳毓屏,非數值并行算法(第二冊)-遺傳算法,北京:科學出版社,2003。
[191] 盧明德,應用知識本體技術於工程應用程式整合之研究,國立台灣大學土木工程研究所博士論文,2006。
[192] 盧險峰,最優化方法應用基礎,上海:同濟大學出版社,2003。
[193] 鍾立來、吳賴雲、張俊傑、廖振宏、王文財,鋼筋混土橋柱耐震行為之試驗研究,國家地震工程研究中心,2000,報告編號:NCREE-00-035。
[194] 鍾立來、吳賴雲、王文財、張俊傑、余保憲,圓形橋柱鋼筋混凝土包覆補強及修復之理論分析與試驗驗證,國家地震工程研究中心,2001,報告編號: NCREE-01-024。
[195] 謝政,李建平,湯澤瀅,非線性最優化,長沙:國防科技大學出版社,2003。
[196] 蘇進國,宋裕祺,吳傳威,蔡益超,「以結構性能為基準之建築結構耐震能力評估分析案例」,中華民國第七屆結構工程研討會論文摘要集,2004。
[197] 蘇進國,以結構性能為基準之房屋建築耐震能力評估,國立台北科技大學土木與防災所碩士論文, 2004,台北。
論文全文使用權限:不同意授權