現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:植栽渠道流速分布與阻滯係數之研究 [以論文名稱查詢館藏系統]
論文英文名稱:Velocity distribution and Retardance Coefficient in Vegetated Channels [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:工程科技研究所
畢業學年度:97
出版年度:98
中文姓名:高蘇白
英文姓名:Su-Pai, Kao
研究生學號:93679019
學位類別:博士
語文別:英文
口試日期:2008-04-15
論文頁數:115
指導教授中文名:陳彥璋
口試委員中文名:林鎮洋;鄭光炎;張守陽;陳主惠;童慶斌;李明旭
中文關鍵詞:水生植物明渠流全浸沒條件植栽渠道流速分布福祿數阻滯係數.
英文關鍵詞:Aquatic PlantOpen ChannelSubmerged ConditionVegetated ChannelVelocity DistributionFroude NumberRetardance Coefficient
論文中文摘要:本研究主要目的有二,一為了解植栽渠道中流速分布特性,並提出新的植栽渠道流速分布理論;二為建立新的植栽渠道阻滯係數推估方法。流速分布是明渠流最為重要的課題之一,在植栽頂蓋上方的流速分布常利用對數流速分布理論,植栽頂蓋下方的流速分布則常用指數或冪流速分布理論。然而對數、指數和冪流速理論並不能完整的應用於植栽渠道流速分布。在本研究中提出一個基於機率論的植栽渠道流速分布理論。一系列的水生植栽渠道實驗也同時進行,以證實新提出植栽渠道流速分布理論的正確性。前人的研究大多針對陸生植物或利用人工塑膠條來模擬,僅有少部分的研究利用天然植物進行實驗。因此在本研究中,兩種不同的天然植栽被應用於估計阻滯係數的實驗中,研究中得知植物種類的不同會影響到阻滯係數。藉由分析實驗數據發現Froude number與阻滯係數具有指數關連性,Froude number是描述明渠流量流況的重要水理參數,並與河溪生物分布具有相關性,因此利用Froude number作為推估阻滯係數之用,可將水理參數及河溪生物分布相連接。
論文英文摘要:The vegetation in channels results in loss of energy and retardance of water flow. However, this vegetation helps to stabilize the slopes and bottoms of open channels. Recently, vegetated channels have been used to improve the surface water quality and to reduce the delivery of sediment and nutrient to rivers and swales. Therefore, it is important to understand the velocity distribution of vegetated channels. The velocity distribution above canopy is usually assumed to follow the well accepted logarithmic law, whereas the velocity distribution below canopy is expressed by exponential law or power law. However, logarithmic, exponential and power laws can be affected by some characteristics of vegetation resulting in the sufficiently inaccurate description of velocity distributions in vegetated channels. In this study, and velocity distribution equation based on probability is developed to simulate the velocity distribution of vegetated channels in the submerged condition. An extensive series of laboratory experiments planted with Egeria densa Planch in the channel bed of the flume are carried out to devise and validate the velocity distribution equation. The results indicate that the developed model of velocity distribution have the applicability and capability to simulate the velocity distribution effected by aquatic vegetation.
The other important parameter of vegetated channel is retardance coefficient. Manning Equation is widely adopted to estimate open channel flows, and selecting retardance coefficient is always one of the most difficult task for estimating velocity and discharge. In cases of estimating accurate retardance coefficient values of vegetated channels, countless trial and error are to be made before reaching conclusive results due to conditions created by various aquatic plants. The majority of past studies on this subject, however, are established based on terrestrial plants and plastic moulds as laboratorial factors, and only few are done with natural aquatic vegetations. Hence, in this study, two different types of natural aquatic plants are applied to estimate retardance coefficients; and the result indicates that each type of plant affects differently in terms of flow resistance. Analysis of hydraulic parameters indicates there are strong correlations between the retardance coefficient and the Froude number. The Froude number is most important and commonly used parameter of open-channel hydraulics. The retardance coefficient and Froude number are exponentially related. Therefore, the Froude number can replaces the product of velocity and hydraulic radius (VR) to estimate the retardance coefficient, in which VR lacks a physical mean. Additionally, it can be used accurately to estimate velocity and discharge during river and wetland restoration.
論文目次:摘 要.........................................................................................................I
ABSTRACT.................................................................................................II
ACKNOWLEDGEMENT............................................................................IV
TABLE OF CONTENTS..............................................................................V
LIST OF TABLES......................................................................................VII
LIST OF FIGURES...................................................................................VIII
CHAPTER 1 INTRODUCTION....................................................................1
1.1 DEFINITION AND IMPORTANCE OF VEGETATED CHANNELS......1
1.2 UNSOLVED ISSUES OF VEGETATED CHANNELS.......................3
1.3 RESEARCH PURPOSES AND METHODOLOGIES..........................4
CHAPTER 2 LITERATURE REVIEW..........................................................6
2.1 THE LITERATURES OF VELOCITY DISTRIBUTION THEORY AND DEVELOPMENT.................................................................................6
2.1.1 Velocity distribution theory of rigid bottom boundary................6
2.1.2 Velocity distribution theory for vegetated channel....................14
2.2 THE LITERATURES OF FLOW RESISTANCE...............................29
2.2.1 The overall channel resistance..................................................32
2.2.2 Single plant resistance...............................................................36
2.3 LITERATURE REVIEW SUMMARY..............................................41
2.3.1 Velocity distribution of an open-channel flow for a vegetated flow field.....................................................................................................41
CHAPTER 3 RESEARCH METHODOLOGY.............................................45
3.1 CHANNEL EXPERIMENT..............................................................46
3.1.1 Experiment materials.................................................................46
3.1.2 Experiment equipment..............................................................50
3.1.3 Experimental requirement.........................................................54
3.1.4 Experiment steps.......................................................................56
3.2 THE NOVEL VELOCITY DISTRIBUTION FOR A CHANNEL WITH SUBMERGED AQUATIC PLANTS.................................................58
3.2.1 Novel velocity distribution in Zone 1........................................60
3.2.2 Novel velocity distribution in Zone 3........................................61
3.2.3 Novel velocity distribution in Zone 2........................................62
3.3 THE NOVEL CORRELATION BETWEEN RETARDANCE COEFFICIENT AND THE FROUDE NUMBER.........................................63
CHAPTER 4 RESEARCH RESULT AND DISCUSSION...........................66
4.1 THE MEASUREMENT OUTCOMES.............................................68
4.2 THE COMPARED OF EXPERIMENT RESULTS AND NOVEL VELOCITY DISTRIBUTION FOR A CHANNEL WITH SUBMERGED AQUATIC PLANTS...................................................................................72
4.2.1 Measured velocity distribution..................................................72
4.2.2 Compactness of measurement data and velocity distribution theory..........................................................................................................76
4.3 ESTIMATION OF THE RETARDANCE COEFFICIENT FOR A CHANNEL WITH SUBMERGED AQUATIC PLANTS..............................85
4.3.1 The relation of retardance coefficient and velocity, water depth and discharge..............................................................................................85
4.3.2 Relationships between n-DR and VR-DR for the Egeria densa Planch channel, Oenanthe javanica bed channel and the non-vegetated channel........................................................................................................88
4.3.3 The relation of retardance coefficient and product of velocity and hydraulic radius....................................................................................92
4.3.4 n-Fr relation of Egeria densa Planch channel, Oenanthe javanica bed channel and non-vegetated channel.....................................................95
CHAPTER 5 CONCLUSIONS AND SUGGESTIONS FOR FUTURE STUDY.....................................................................................................100
5.1 CONCLUSIONS...........................................................................100
5.2 SUGGESTIONS FOR FUTURE STUDY.......................................102
BIBLIOGRAPHY......................................................................................103
NOMENCLATURE...................................................................................113
論文參考文獻:[1]Baptist, M.J. "A flume experiment on sediment transport with flexible, submerged vegetation." International workshop on Riparian Forest vegetated channels: hydraulic, morphological and ecological aspects, Trento, Italy.
[2]Baptist, M.J., V.babovic, J.Rodriguez, M.Keijzer, Uittenbogaard, R.E., A.Mynett, and A.Verwey. (2006). "On inducing equations for vegetation resistance." Journal of Hydraulic Research, 45(4), 435-450.
[3]Baptist, M.J., V.babovic, J.Rodriguez, M.Keijzer, Uittenbogaard, R.E., A.Mynett, and A.Verwey. (2006). "On inducing equations for vegetation resistance." Journal of Hydraulic Research, 0(0), 1-16.
[4]Bazin, HE. (1865). Research Hydrauliques, Paris.
[5]Carollo, F. G., Ferro, V., and Termini, D. (2002). "Flow velocity measurements in vegetated channels." Journal of Hydraulic Engineering, 128(7), 664-673.
[6]Chen, Yen-Chang. (1998). "An Efficient Method of Discharge Measurement" PhD dissertation University of Pittsburgh, Pittsburgh.
[7]Chen, Yen-Chang, and Chiu, Chao-Lin. (2004). "A fast method of flood discharge estimation." Hydrological Processes, 18, 1671-1684.
[8]Chien, Ning, Qian, Ning, Wan, Zhao-Hui, Wan, Chao-Hui, and McNown, John S. (1999). Mechanics of Sediment Transport, American Society of Civil Engineers.
[9]Chiu, Chao-Lin. (1986). "Entropy and probability concepts in hydraulic." Journal of Hydraulic Engineering, 113(5), 583-600.
[10]Chiu, Chao-Lin. (1988). "Entropy and 2-D velocity distribution in open channels." Journal of Hydraulic Engineering, 114(7), 738-756.
[11]Chiu, Chao-Lin. (1989). "Velocity distribution in open channel flow." Journal of Hydraulic Engineering, 115(5), 576-594.
[12]Chiu, Chao-Lin, Jin, Weixia, and Chen, Yen-Chang. (2000). "Mathematical models of distribution of sediment concentration." Journal of Hydraulic Engineering, 126(1), 16-23.
[13]Chow, Ven Ten. (1959). Open-Channel Hydraulics, Mc-Graw-Hill, New York.
[14]Christensen, B. A. "Open channel and sheet flow over flexible roughness." 21st IAHR Congress, Melbourne, Australia, 463-497.
[15]Clauser, F.H. (1956). "The turbulence boundary layer." Adv. Appl. Mech., 4, 1-51.
[16]Coles, D. (1965). "Transition in circular couette flow." Fluid Mech., 21, 385-425.
[17]Eagleson, Peter S. (2002). Ecohydrology Darwinian Expression of Vegetation Form and Function, Cambridge University Press, New York.
[18]El-Hakim, Omnia, and Salama, Mohamed. (1992). "Velocity distribution inside and above branched flexible roughness." Journal of Irrigation & Drainage Engineering - ASCE, 118(6), 914-927.
[19]Ellis, Theodore G., Emery, Charles E., Herschei, Clemens, Wood, De Volson, and Fanning, J.T. (1878). "The Cause of the maximum velocity of water flowing in open channels being below the surface, and also on the flow of water in pipes under pressure." Transactions of the American Society of Civil Engineers, 7(May.), 122-130.
[20]Erduran, K. S., and Kutija, V. (2003). "Quasi-three-dimensional numerical model for flow through flexible, rigid, submerged and non-submerged vegetation." Journal of Hydroinformatics, 5(3), 189-202.
[21]Fathi-Maghadam, M., and Kouwen, Nicholas. (1997). "Nonrigid, nonsubmerged, vegetative roughness on floodplains." Journal of Hydraulic Engineering, 123(1), 51-57.
[22]Fenzl, R.N. (1962). "Hydraulic Resistance of Broad Shallow Vegetated Channels." PhD dissertation, University of California, at Davis, Davis.
[23]Ghisalberti, M., and Nepf, H. (2006a). "The structure of the shear layer in flows over rigid and flexible canopies." Environmental Fluid Mechanics, 6(3), 277.
[24]Ghisalberti, Marco, and Nepf, Heidi. (2006b). "Mass transport in vegetated shear flows." Environmental Fluid Mechanics, 5, 527-551.
[25]Graf, Walter H., and Chhun, V. Heang. (1976). "Manning's roughness for artificial grasses." Journal of Irrigation and Drainage Division, 102(4), 413-423.
[26]Green, JEP, and Garton, J.E.,. (1983). "Vegetation lined channel design." Transactions, American Society of Agricultural Engineers, 26, 437-439.
[27]Green, Julian C. (2005). "Modeling flow resistance in vegetated streams: review and development of new theory." Hydrological Processes, 19, 1245-1259.
[28]Henderson, F. M. (1966). Open Channel Flow, Macmillan, New York.
[29]Hu, Chun-hong, and Ha, Ui-Ja. (1995). The Mechanics and Statistics Law of Sediment Transport in Open Channel, Scientist Publish (in chinese).
[30]Ikeda, Syunsuke, and Kanazawa, Minoru. (1996). "Three-dimensional organized vortices above flexible water plants." Journal of Hydraulic Engineering, 122(11), 634-640.
[31]Inoue, E. (1963). "On the turbulent structure of airflow within crop canopies." Journal of Meteorology Society Japan (41), 317-326.
[32]Jarvela, J. "Determination of flow resistance of vegetated channel banks and floodplains." River Flow 2002, Lisse.
[33]James, C. S., Birkhead, A. L., Jordanova, A. A., and O'Sullivan, J. J. (2004). "Flow resistance of emergent vegetation." Journal of Hydraulic Research, 42(4), 390-398.
[34]Jones, Janathan E. (1982). "Design and Construction of Urban Storm-water Management Systems." 77, ASCE, RESTON.
[35]Kao, David T. Y., and Barfield, Billy J. (1978). "Prediction of flow hydraulic for vegetated channels." Transactions, American Society of Agricultural Engineers, 21(3), 489-494.
[36]Kilgore, Roger T., and Cotton, George K. (2005). "Design of Roadside Channels with Flexible Linings." Transportation, ed., National Highway Institute, 153.
[37]Kirby, J. T., Durrans, S. R., Pitt, R., and Johnson, P. D. (2005). "Hydraulic resistance in grass swales designed for small flow conveyance." Journal of Hydraulic Engineering, 131(1), 65-68.
[38]Klopstra, D., Barneveld, H.J., Noortwijk, J.M. van, and Velzen, E.H. van. "Analytical model for hydraulic roughness of submerged vegetation." The 27th Congress of the International Association for Hydraulic Research Proceedings of Theme A, Managing Water: Coping with Scarcity and Abundance, New York, 775-780.
[39]Kouwen, Nicholas (1988). "Field estimation of the biomechanical properties of grass." Journal of Hydraulic Research, 26(5), 559-568.
[40]Kouwen, Nicholas. (1990). "Modern approach to the design of grassed channels." Journal of Irrigation and Drainage Engineering, 118(5), 733-743.
[41]Kouwen, Nicholas, and Li, R. M. (1980). "Biomechanics of vegetative channel linings." Journal of the Hydraulics Division, ASCE, 106(HY6, Proc. Paper, 15464), 1085.
[42]Kouwen, Nicholas, Li, Ruh-Ming, and Simons, Daryl B. (1981). "Flow resistance in vegetated waterways." Transactions, American Society of Agricultural Engineers, 24(3), 713-743.
[43]Kouwen, Nicholas, Unny, T.E., and Hill, Harry M. (1969). "Flow retardance in vegetated channels." Journal of Irrigation and Drainage Division, IR2, 329-342.
[44]Kouwen, Nicholas, and Unny, Tharakkal Eroman. (1973). "Flexible roughness in open channels." ASCE J Hydraulic Div, 99(HY5), 713.
[45]Kutija, V., and Minh Hong, H. T. (1996). "A numerical model for assessing the additional resistance to flow introduced by flexible vegetation." Journal of Hydraulic Research, 34(1), 99-114.
[46]Lantin, Anna, and Barrett, Michael. "Design and pollutant reduction of vegetated strips and swales." World Water and Environmental Congress, Anchorage, Alaska USA.
[47]Li, C.W., and K.Yan. (2007). "Numerical investigation of wave-current-vegetation interaction." Journal of Hydraulic Engineering, 133(7), 794-803.
[48]Lin, J.Y., Chen, Y.C. and Wu, M.S.. (2004). Stream Ecological Engineering Methods, Ming Wen Press, Taipei.
[49]Lindner,K. (1982). "Der Stromungswiderstand von Pflanzen-bastanden." Leichtweiß-Institut für Wasserbau., TU Braunschweig.
[50]M.Fathi-Maghadam, and Kouwen, Nicholas. (1997). "Nonrigid nonsubmerged vegetative roughness on floodplains." Journal of Hydraulic Engineering, 123(1), 51-57.
[51]Mahbub, A. K. M. Reza, and Suzuki, Shigeyoshi. (1988). "Flow retardance in open channels due to artificial flexible vegetation." Journal of irrigation engineering and rural planning, 13, 5-17.
[52]Murota, Akira, and Fukuhara, Teruyuki. (1985). “Experimental Study on Turbulent Structure in Open Channel Flow with Aquatic Plants”, Japan Soc of Civil Engineers.
[53]Murota, Akira, Fukuhara, Teruyuki, and Sato, Masaru. (1984). "Turbulence structure in vegetated open channel flows." Journal of Hydroscience and Hydraulic Engineering, 2(1), 47-60.
[54]Naot, Dan, Nezu, Iehisa, and Nakagawa, Hiroji. (1996). "Hydrodynamic behavior of partly vegetated open channel." Journal of Hydraulic Engineering, 122(11), 625-633.
[55]Nepf, H. M., Mugnier, C. G., and Zavistoski, R. A. (1997). "The effects of vegetation on longitudinal dispersion." Estuarine, Coastal and Shelf Science, 44(6), 675.
[56]Nepf, H. M., and Vivoni, E. R. "Drag and diffusivity within emergent vegetation." Proceedings of the ASCE Wetlands Engineering River Restoration Conference, Denver, CO, USA.
[57]Nepf, H. M., and Vivoni, E. R. (2000). "Flow structure in depth-limited, vegetated flow." Journal of Geophysical Research C: Oceans, 105(C12), 28547-28557.
[58]Nepf, Heidi. (2002). "Transport Processes in the Environment." MIT Class Note.
[59]Neary, V.S.. (2003). "Numerical solution of fully developed flow with vegetative resistance." Journal of Engineering Mechanics, 129(5), 558-563.
[60]Niklas, Karl J. (1992). Plant Biomechanics: An Engineering Approach to Plant Form and Function, University of Chicago Press.
[61]Palmer, VJ. (1945). "A method for designing vegetated waterways." Agricultural Engineering, 26(12), 516-520.
[62]Petryk, Sylvester, and Bosmajian, George. (1975). "Analysis of flow through vegetation." Journal of hydraulic division, HY7, 871-884.
[63]Pitts, Jim. (1976). "Relationships between aquatic plants and reproduction of Fishes." American Currents.
[64]Plate, E.J., and Quraishi, A.A. (1965). "Modeling of velocity distributions inside and above tall crops." Journal of Applied Meteorology, 4(3), 400-408.
[65]Pohl,R.(2004). "History of Hydraulic Engineering." Faculty of Civil Engineering, Dresden University of Technology,.
[66]Quraishi, A. A. (1963). "Effect of Flexible Roughness Elements on Diffusion in a Turbulent Boundary Layer." PhD dissertation, Colorado University, Fort Collins.
[67]Quraishi, A. A., and Abou-Seida, M.M. (1975). "Velocity Distribution Inside and Above Flexible Roughness." Riyadh Uni., Saudi Arabia.
[68]Ree, W.O. (1958). "Retardation coefficients for row crops in diversion terraces." Transactions, American Society of Agricultural Engineers, 1(1), 78-80.
[69]Ree, W.O., and Palmer, V.J. (1949). "Flow of water in channels protected by vegetative linings." Tech. Bull. 967, USDA.
[70]Ren, Yi. (1994). Open Channel Hydraulic, Tung-Wa, Taipei.
[71]Righetti, M., and Armanini, A. (2002). "Flow resistance in open channel flows with sparsely distributed bushes." Journal of Hydrology, 269(1-2), 55-64.
[72]Robert, Andre. (2003). River Processes: An Introduction to Fluvial Dynamics, Oxford University Press Inc., New York.
[73]Rossby, C.G., and Montgometry, R.B. (1935). "The layers of frictional influence in wind and ocean currents." Papers in Physical Oceanography and Meteorology, 3(3), 101.
[74]Rouse, Hunter. (1965). "Critical analysis of open-channel resistance." Journal of Hydraulic Division, HY4, 4387-4411.
[75]Rowinski, P. M., and Kubrak, J. (2002). "A mixing-length model for predicting vertical velocity distribution in flows through emergent vegetation." Hydrological Sciences, 47(6), 893-904.
[76]Stephan, U., and Gutknecht, D. (2002). "Hydraulic resistance of submerged flexible vegetation." Journal of Hydrology, 269(1-2), 27-43.
[77]T.Fischer-Antze, T.Stoesser, P.Bates, and Olsen, N.R.B. (2001). "3D numerical modeling of open-channel flow with submerged vegetation." Journal of Hydraulic Research, 39(3), 303-310.
[78]Temple, D. M. (1980). "Tractive force design of vegetated channels." Transactions, American Society of Agricultural Engineers, 23(4), 884-890.
[79]Temple, Darrel M. (1982). "Flow retardance of submerged grass channel linings." Transactions, American Society of Agricultural Engineers, 25(5), 1300-1303.
[80]Temple, Darrel M. (1986). "Velocity distribution coefficients for grass-lined channels." Journal of Hydraulic Engineering, 112(3), 193-205.
[81]Thompson, Gene T., and Roberson, John A. (1976). "A theory of flow resistance for vegetated channels." Transactions of the American Society of Agricultural Engineers, 19(2), 288.
[82]Toffaleti, FB. (1969). "Definitive computations of sand discharge in river." Journal of Hydraulic Division, 95(HY1), 225-246.
[83]USDA. (1999). "Wildlife Habitat in Grassed Waterways." USDA-Natural Resources Conservation Service-North Carolina.
[84]USDA. (1947). "Handbook of Channel Design for Soil and Water Conservation." USDA, Washington, D.C.
[85]Velasco, D., Bateman, A., Redondo, J. M., and Demedina, V. (2003). "An open channel flow experimental and theoretical study of resistance and turbulent characterization over flexible vegetated linings." Flow, Turbulence and Combustion, 70(1-4), 69-88.
[86]White, Frank M. (2006). Viscous Fluid Flow, McGraw Hill, Boston.
[87]Wilson, C.A.M.E., and Horritt, M.S. (2002). "Measuring the flow resistance of submerged grass." Hydrological Processes, 16, 2589-2598.
[88]Wilson, C.A.M.E., Stoesser, T., and P.D.Bates. (2003). "Open channel flow through different forms of submerged flexible vegetation." Journal of Hydraulic Engineering, 129(11), 847-853.
[89]Wong, Tony H. F., Fletcher, Tim D., Duncan, Hugh P., and Jenkins, Graham A. (2006). "Modeling urban storm water treatment--A unified approach." Ecological Engineering, 27(1), 58-70.
[90]Yang, Kejun, Cao, Shuyou, and Knight, Donald W. (2007). "Flow patterns in compound channels with vegetated floodplains." Journal of Hydraulic Engineering, 133(2), 148-159.
[91]Yang, Yuen-Po, Yen, Shen-Horn, and Lin, Chung-Kang. (2001). Illustrated Guide to Aquatic Plants of Taiwan, Council of Agriculture the Executive Yuan of Taiwan, Taipei.
[92]Yates, A. G., Bailey, R. C., and Schwindt, J. A. (2007). "Effectiveness of best management practices in improving stream ecosystem quality." Hydrobiology, 583(1), 331-344.
[93]Yen, Ben-Chie. (2002). "Open channel flow resistance." Journal of Hydraulic Engineering, 128(1), 20-39.
[94]Yu, Shaw L., Kuo, Jan-Tai, Fassman, Elizabeth A., and Pan, Henry. (2001). "Field test of grassed-swale performance in removing." Journal of Water Resources Planning and Management, 127(3), 168-171.
[95]Yu, Shaw L., Stanford, Richard L., Zhen, Jenny Xiao-yue, and Lin, Jen-Yang. (2005). "Water management for eco-friendly urban and highway construction." Journal of Ecotechnology, 1, 1-8.
論文全文使用權限:同意授權於2014-07-03起公開