現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:水生植物抗流機制之研究 [以論文名稱查詢館藏系統]
論文英文名稱:A Study of Flow Resistance and Adaptation of Aquatic Macrophytes [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:工程科技研究所
畢業學年度:98
出版年度:99
中文姓名:陳湘媛
英文姓名:Shiang-Yuarn Chen
研究生學號:92679013
學位類別:博士
語文別:中文
口試日期:2010-06-26
論文頁數:114
指導教授中文名:林鎮洋
指導教授英文名:Jen-Yang Lin
口試委員中文名:郭一羽;郭城孟;林信輝;梁文盛;陳淑華;陳彥璋
中文關鍵詞:抗流機制模擬水道水生植物生態工程
英文關鍵詞:flow resistance mechanismsimulated channelaquatic macrophytesecological engineering.
論文中文摘要:近年來,許多關於生態工程之研究在學界與工程界積極展開,然而研究重點多在河川護岸之型式、材質、工法,並以植栽之存活比率、綠覆速度做為適生植物種類之指標,對於曠日廢時的監測或實證研究較為少見,亦少有從植物之抗流能力(flow resistance)出發,針對植生對不同流速產生之抗流機制之探討,或者關於植生對不同流速之河床結構之適應性的實驗。本研究係從模擬之水工模型出發,探究水生植物對於不同流速之水道,在抗流力方面會產生如何之變化,並就植被之生長速率、莖葉組織強度的變化、抗流之耐度極限、抗沖刷反應等加以分析,期能找出植物面對不同流速時在生理上的反應機制。
根據研究結果,發現水生植物因應不同流速,確實在植物生理上產生不同的反應機制,以水芹菜為例,在面對較高流速沖刷時,其生長速度趨緩,莖芽組織變得矮小且柔軟,以增加植物的抗流彈性。此外,其平均根長變短,錨定能力降低,其地上莖葉與地下根系的生物量均受到流速之抑制,研究同時發現水生環境中生長的水芹菜其斷面的平均維管束數量雖然要較陸生者為低,然而實際上平均斷面之單位面積的維管束數量卻隨流速增加而提高,使水芹菜面臨高流速環境時能夠以降低表面積卻增加維管束密度的方式避免外力的傷害。研究過程中,植栽槽會出現自生性藻膜,其組成包括念珠藻、顫藻與舟型藻等,而水芹菜則提供藻膜附著的機會,使藻類較不易被水流沖走,可有效降低細粒坋土之沖刷,對表層土壤形成保護的作用。本研究成果除可進一步確認適性植生種類或先驅植物種外,亦可瞭解植物在生態工程上可扮演的角色與極限,未來可做為河道植生工程之設計依據。鑑於適性植物種類可能是多元化的組成,因此未來的實驗可進一步針對植生之配置模式,探討其面對不同流速之抗流機制變化,甚至嘗試以其他植栽物種為實驗材料,重覆實驗以比較是否在抗流機制上呈現種間差異。
論文英文摘要:In recent years, ecological engineering has been widely studied in both theoretical academia and practical engineering fields. However, most studies stressed the types, materials and construction approaches of riverbank protection works, or the survival ratio of certain vegetation. There has been relatively little field evidences to verify the mitigation approaches and specifically on the effects of vegetation on channel and flow resistance mechanisms. The present study is carried out in a simulated channel. The aims are, firstly, to examine how aquatic macrophytes respond to different channel flow velocities in terms of changes in their flow resistance mechanisms; next, to examine the growth rate of the macrophytes, the growth rate and shape of macrophyte shoots, tissue strength of the shoots and roots, tolerance of plants, and erosion-resisting response to various velocities; finally, to clarify the physical reactive mechanism of the aquatic macrophytes when facing the different velocities.
Experimental results showed that Oenanthe javanica DC. (water celery) presented morphological variations at different flow velocities. In particular, the growth rate became slow and plant shoots were shorter and softer to increase plant flexibility as flow velocities increased. Root length and root anchorage decreased. Root, stem, and shoot mass were also found to be restricted to flow velocity. Study results also show that the number of vascular bundles in new shoots decreased in flowing water environments compared to terraneous planting environments. Actually, the average number of vascular bundles per square mm increased as flow velocity increased to provide compensating structural support mechanisms. By the way, the algal mats would form in the planters automatically, including Anabaena azollae, Oscillatoria, and Navicula sp. These algal mats played a topsoil protection role especially for the silt. This research is anticipated to verify the suitable planting materials or precursors for the riverbanks and, additionally, to clarify the roles and limitations of applying aquatic macrophytes in ecological engineering. Since suitable streambank vegetation may include a variety of several different plants, useful future studies could examine the flow-resistance mechanisms of clusters of water celery and other selected plants. Through repeated experiments, the existence and level of interspecific difference will be also examined.
論文目次:目 錄

中文摘要 ........................................i
英文摘要……....................................iii
目錄 ........................................v
表目錄 ......................................vii
圖目錄 .....................................viii
第一章 緒論 ---------------------------------- 1
1.1研究動機與目的 ---------------------------------1
1.2研究之重要性 -------------------------------2
1.3研究擬釐清的問題 -------------------------------2
1.4研究成果之應用 -------------------------------3
第二章文獻回顧-------------------------------------5
2.1植生抗流研究------------------------------------5
2.2植生對邊坡穩定性的相關研究 ------------------ 6
2.3生態渠道之相關研究 ------------------------ 8
2.4河岸環境管理研究 ---------------------------- 9
2.5植物型態與解剖的研究 ------------------ 9
2.6綜合評述---------------------------------------11
第三章 研究方法-----------------------------------13
3.1研究方法與流程---------------------------------13
3.2實驗設計---------------------------------------14
3.3採土場址---------------------------------------24
3.4設定植物生長環境-------------------------------27
3.5實驗操作步驟-----------------------------------28
第四章 研究結果-----------------------------------32
4.1.各組實驗流量與流速之關係 --------------------33
4.2溫度變化與水芹菜之生長 -------------------35
4.3 pH值與水芹菜之生長 -------------------40
4.4流速影響水芹菜之生長速度 --------------------41
4.5流速影響水芹菜之生物量 ------------------61
4.6流速影響水芹菜之形態---------------------------64
4.7 流速影響水芹菜之生理結構----------------------70
4.8 自生性藻膜之形成------------------------------76
4.9小結 --------------------------------------79
第五章 討論與分析抗流反應機制 -------------------81
5.1從水芹菜平均綠葉數之相對差值討論流速之影響-----81
5.2從水芹菜平均生物量之相對差值討論流速之影響-----82
5.3相關係數分析-----------------------------------84
5.4株高與其他依變項之關聯性分析-------------------86
5.5根長與綠葉數之關聯性分析-----------------------92
5.6維管束與平均斷面積之關係-----------------------94
5.7分析抗流反應機制建立抗流模式-------------------96
5.8小結------------------------------------------107
第六章 結論與後續研究----------------------------108
6.1實驗過程遭遇之困難及解決途徑------------------108
6.2結論 ----------------------------------------109
6.3後續研究--------------------------------------110
參考文獻 --------------------------------112
論文參考文獻:參考文獻

書籍
[1] Järvelä, J. (2004) Flow Resistance in Environmental Channels: Focus on Vegetation. Helsinki University of Technology Water Resources Publications, Finland.
[2] Greenway, D.R. (1987) Vegetation and Slope Stability. In: Slope Stability, M.G. Anderson and K.S. Richards (Editors). John Wiley and Sons Ltd, New York, New York.
[3] 林鎮洋、陳彥璋(2006)水庫集水區生態水工結構物設計參數之建立,經濟部水利署。
[4] Rutherfurd, I. (2002) The influence of riparian management on stream erosion. In: Lovett, S. & Price, P. (Editors) (2002) Riparian Land Management Technical Guidelines, Volume One: Principles of Sound Management, LWRRDC, Canberra.
[5] Mitsch, W.J. and Jørgensen S.E. (2004) Ecological Engineering and Ecosystem Restoration. John Wiely & Sons, Inc., Hoboken, New Jersey, pp.125-162.
[6] 林春吉(2002)台灣水生植物(一),台北市,田野影像,pp.135。
[7] 黃增泉等(1998)台灣植物誌第二版,台北市,國立台灣大學植物學系,3: 1030-1031。
[8] 蔡淑華(2000)植物組織切片技術綱要,台北市,茂昌圖書有限公司。
期刊論文
[9] Green, J.C. (2004) Modelling flow resistance in vegetated streams: review and development of new theory. Hydrological Processes, 19(6): 1245-1259.
[10] Simon, A. and Collison A.J.C. (2002) Quantifying the Mechanical and Hydrologic Effects of Riparian Vegetation on Stream-Bank Stability. Earth Surface Processes and Landforms, 27(5): 527-546.
[11] Anderson, R.J., Bledsoe B.P. and Hession W.C. (2004) Width of Streams and Rivers in Responsive to Vegetation, Bank Material, and Other Factors. Journal of the American Water Resources Association, 40(5): 1159-1172.
[12] Lewis, N.K. (1997) Use of the Discharge-weighted Average Velocity in studies of the frictional energy loss of streamflow. Earth Surface Processes and Landforms, 22: 329-336.
[13] Manz, D.H. and Westhoff D.R. (1988) Numerical analysis of the effects of aquatic weeds on the performance of irrigation conveyance systems. Canadian Journal of Civil Engineering, 15: 1-13.
[14] Sand-Jensen, K. (2003) Drag and reconfiguration of freshwater macrophytes. Freshwater Biology, 48: 271-283.
[15] Schutten, J. and Davy A.J. (2000) Predicting the hydraulic forces on submerged macrophytes from current velocity, biomass and morphology. Oecologia, 123: 445-452.
[16] Dabney, S.M., Moore M.T. and Locke M.A. (2006) Integrated Management of In-field, Edge-of-field, and After-field Buffers. Journal of the American Water Resources Association, 42(1): 15-24.
[17] Simon, A. and Collison A.J.C. (2002) Quantifying the Mechanical and Hydrologic Effects of Riparian Vegetation on Stream-Bank Stability. Earth Surface Processes and Landforms, 27(5): 527-546.
[18] 拱祥生、林宏達(2003)植生對邊坡生態工法穩定性影響分析初探。技師月刊,31: 60-68。
[19] 林信輝、楊宏達、陳意昌(2005)九芎植生木樁之生長與根系力學之研究,中華水土保持學報,36(2): 123-132。
[20] 朱榮華、游新旺;陳主惠(2005)根系變形模式與含根土壤剪力強度之研究,中國技術學院學報,27: 207-219。
[21] Rhee, D.S., Woo, H.; Kwon. B.A. and Ahn, H.K. (2008) Hydraulic resistance of some selected vegetation in open channel flows. RiverRresearch and Applications, 24: 673–687.
[22] 呂珍謀、詹勳全、黃偉哲(2008)河道植生群型態對水流之影響,中華水土保持學報,39(1): 95-107。
[23] Biehle, G., Speck T. and Spatz H.C. (1998) Fontinalis antipyretica- a comparison of specimens from habitats with different flow velocities, Botanica Acta, 111: 42-50.
[24] Puijalon S. and Bornette G. (2004) Morphological variation of two taxonomically distant plant species along a natural flow velocity gradient, New Phytologist, 163: 651-660.
[25] Puijalon S., Bornette G. and Sagnes P. (2005) Adaptation to increasing hydraulic stress: morphology, hydrodynamics and fitness of two higher aquatic plant species, Journal of Experimental Botany, 56(412): 777-786.
[26] 林鎮洋、陳彥璋、翁智鴻(2005),不同流況對魚類棲地可用面積之影響:以台北縣枋腳溪為例,朝陽設計學報,5: 1-16。
會議論文
[27] 陳秀婷、吳瑞賢、陳致向、游新旺、朱榮華、陳主惠(2006)含根土壤剪力強度之實驗量測與數值分析,第十五屆水利工程研討會,pp. H112-119。
[28] 游新旺、陳主惠、朱榮華(2006)根力模式對含根土壤剪力強度評估之影響,第十五屆水利工程研討會,pp. H177-184.
[29] 楊紹洋、陳獻、邱金火、洪偉哲(2006)生態渠道水理特性之研究,第十五屆水利工程研討會,pp. H128-133.
學位論文
[30] 吳正雄 (1990)植生根力與坡面穩定關係之研究。國立台灣大學森林學研究所博士論文,台北。
[31] 林信孝(2003)溪溝之魚類棲地水理分析—以大溝溪為例,國立台北科技大學環境規劃管理研究所碩士論文,台北。
網站資料
[32] 經濟部水利署網站:http://www.wra.gov.tw/ct.asp?xItem=14298&CtNode= 4347, accessed on 20081227.
[33] 經濟部水利署網站:http://www.wra.gov.tw/ct.asp?xItem=14298&CtNode= 4374, accessed on 20081227.
[34] 台灣河川復育網站:http://trrn.wrap.gov.tw/index.php?option=com_content &view=frontpage. accessed on 20090510.
[35] 中國大陸吉林省延邊農業部門網站:http://yanbian.jlagri.gov.cn/info.asp?id= 296, accessed on 20100808.
論文全文使用權限:同意授權於2010-08-24起公開