現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:混合式遺傳演算法應用於斜張橋及脊背橋鋼索預力最佳化設計與施工規劃之研究 [以論文名稱查詢館藏系統]
論文英文名稱:Study on Optimum Design of Post-Tensioning Cable Forces and Feasible Erection Scheme for Cable-Stayed and Extradosed Bridges Using Hybrid Genetic Algorithm [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:工程科技研究所
畢業學年度:101
出版年度:102
中文姓名:王俊穎
英文姓名:Chun-Ying Wang
研究生學號:98679006
學位類別:博士
語文別:中文
口試日期:2013-07-03
論文頁數:256
指導教授中文名:宋裕祺
口試委員中文名:呂良正;張慕聖;郭世榮;張荻薇;張國鎮;蔡益超;黃震興
中文關鍵詞:粒子群演算法人工智慧鋼索初始預力橋梁施工階段分析預力混凝土橋梁正裝分析倒拆分析
英文關鍵詞:Particle Swarm OptimizationArtificial IntelligenceConstruction Stage AnalysisPrestressed Concrete Bridges
論文中文摘要:人工智慧演算法主要從自然界或生物界的生存規律或法則獲得啟發,仿效其原理進而發展成為求解最佳化問題的方式,與傳統最佳化方式多依賴函數導數或梯度不同,人工智慧演算法多採用個體之間的相互競爭或學習的模式進行隨機化搜索,具有算法簡單、易於在電腦程式中操作與實現等多項優點,對於不易以數學函數表示之複雜或非線性問題更顯見其長處,其中遺傳演算法(GA, Genetic Algorithm)從1975年發軔至今已廣泛被應用於多項研究領域,其卓越的全域搜索能力在最佳化問題的求解上普遍得到良好的成效。
然而,GA在實際應用方面仍有些無法完全盡如人意之處,如早熟或局部搜索能力不佳等問題,為此,本文研擬一套混合式的遺傳演算法(HGA, Hybrid Genetic Algorithm)演算程序,將粒子群演算法(Particle Swarm Optimization)之局部模型作為GA演算過程之突變操作的手段,在不影響原遺傳演算法的搜索性能為前提下,使得HGA不僅能保有傳統GA固有之隨機搜索及個體競爭的特性外,同時又能兼具粒子群演算法之個體間訊息交換與資訊共享的長處,冀能提升演算法求解精度,改善易陷入局部極值的缺點,本文依上述方式研擬HGA演算流程及開發相關應用程式,再利用文獻所載之數學函數及桁架最佳化設計對無約束及約束最佳化問題求解及驗証。
斜張橋的整體力學行為與鋼索預力值具有直接的關係,無論是施工階段或服務階段,皆可透過鋼索預力的調整使得到橋梁在成橋狀態下維持其最佳狀態,此外,亦須考量施工過程中如何確保最終主梁閉合時,其線形得以與目標線形最接近之問題。因此,鋼索預力值的求解在工程實務上亦屬最佳化問題的範疇,過去相關的求解方式多依賴數學規劃方法,求解在數個約束條件下符合設計者目標之最佳值,但鮮少以人工智慧演算法應用此類問題上,本文以社子大橋為例,分別以最小應變能及成橋時的線形為目標函數,配合商用分析軟體Midas Civil分析模組,進行鋼索預力值的運算與探討。
最後,本文以脊背橋為研究對象,引入斜張橋鋼索預力最佳化的概念,考量預力混凝土時間相依特性及施工程序,分別利用應變能最小、最經濟鋼索及主梁局部應力為目標函數進行最佳化鋼索預力的研究,演算過程中可有效解決大量迭代的分析流程,達到自動化運算的目的。文中運用程式整合技術克服HGA計算核心和商用軟體Midas Civil施工階段分析模組之間的銜接問題,同時開發一系列視覺化檢核模組,包括施工階段主梁應力呈現、鋼索軸力變化、服務階段預力混凝土撓曲強度與剪力強度計算與檢核模組等,研究成果可供相關設計與橋梁施工規劃之參考。
論文英文摘要:This dissertation proposed a hybrid genetic algorithm (HGA) to deal with optimization on post-tensioning cable forces as well as feasible erection scheme of cable-stayed bridge and extradosed bridge. The HGA proposed combined conventional genetic algorithm (GA) and local particle swarm optimization (PSO) model, denoted as PSO-GA. The local PSO model was employed in a new mutation strategy of GA for increasing the probability of skipping from local minimum to global optimum efficiently. The efficiency and accuracy of PSO-GA proposed were investigated through some case studies on minimization of mathematical functions and optimal designs of a 10-bar truss structure with constraints on member stress as well as node displacement. The benefit of PSO-GA proposed on accelerating convergence is able to be assured.
The determination on post-tensioning cable forces of the cable-stayed bridge to have an optimum structural performance is the core of structural analysis and design for engineers. For past few decades, traditional mathematical programming approaches were used to do the optimization problem since the total construction cost or total strain energy of the completed bridge can be expressed in an explicit mathematical form and therefore served as objective function (OF). However, this kind of OF is unable to be obtained any more for plan on erection scheme because determination of post-tensioning force for the cable most newly implemented in every stage of cantilever construction for cable-stayed bridge is depending on different structural systems during erection process. The superiority of PSO-GA on dealing with this kind of complex problem can be shown and therefore becomes the motive of this study. A practical cable-stayed bridge was employed as research target. The comparisons between analytical results obtained from PSO-GA proposed and actual erection data provided by constructor were carried out. It showed the proposed method even have a better result than that adopted in practical construction.
Similar to the case of cable-stayed bridges, this dissertation applied PSO-GA to deal with optimum design of extradosed bridge considering three different OFs. The results showed the structural performance of extradosed bridge can be improved by the post-tensioning forces determined of the cables and the more economical designs can be obtained.
The presented PSO-GA procedure can deal with optimum design of post-tensioning cable forces and feasible erection scheme for cable-stayed and extradosed bridges. The procedure developed were already linked with soft ware of MIDAS-CIVIL, an automatic operation can be easily performed for engineers. The results obtained could benefit engineers an efficient and accurate design.
論文目次:摘要 i
ABSTRACT iii
誌謝 vii
目錄 ix
表目錄 xiii
圖目錄 xv
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究重點及方法 3
1.3 論文組織與架構 3
第二章 文獻回顧 7
2.1 前言 7
2.2 遺傳演算法與粒子群演算法在工程上的應用 7
2.3 斜張橋最佳化分析之研究 12
2.4 大跨徑橋梁施工階段分析、施工控制與脊背橋相關之研究 16
2.5 小結 22
第三章 混合式遺傳演算法PSO-GA 25
3.1 前言 25
3.2 遺算演算法概述 26
3.3 遺傳演算法要點說明 28
3.3.1 編碼方式 28
3.3.2 適應度函數 30
3.3.3 選擇操作 33
3.3.4 交配操作 34
3.3.5 突變操作 38
3.4 具限制條件遺傳演算法 41
3.5 遺傳演算法之基本設計原則 44
3.6 混合式遺傳演算法 46
3.6.1 遺傳-退火演算法 47
3.7 以局部粒子群演算法模型為基礎之遺傳突變操作 50
3.7.1 粒子群演算法簡介 50
3.7.2 基本粒子群演算法 51
3.7.3 PSO-GA之操作流程 55
3.8 混合式遺傳演算法PSO-GA分析與驗證 59
3.8.1 無束制數學函數最佳化問題求解 59
3.8.2 桁架結構最佳化設計應用 69
3.9 小結 80
第四章 混合式遺傳演算法在斜張橋最佳化分析之應用 83
4.1 前言 83
4.2 斜張橋力學特性 84
4.3 斜張橋最佳化分析模式 85
4.4 斜張橋最佳化設計之目標函數 87
4.5 案例分析-社子大橋 89
4.5.1 社子大橋簡介 89
4.5.2 鋼索預力最佳化分析 91
4.5.3 分析結果與討論 94
4.5.4 PSO-GA與二次規劃法(QP)分析結果比較 99
4.6 案例分析-三跨連續斜張橋 106
4.6.1 橋梁諸元 107
4.6.2 鋼索預力最佳化分析 109
4.6.3 分析結果與討論 112
4.6.4 PSO-GA與GA、二次規劃法(QP)分析結果比較 120
4.7 小結 128
第五章 混合式遺傳演算法於斜張橋施工階段鋼索預力分析之應用 129
5.1 斜張橋施工及控制 129
5.2 斜張橋施工階段之理想狀態 133
5.3 施工階段鋼索預力最佳化設計之目標函數 141
5.4 案例分析-社子大橋 142
5.4.1 求解施工階段鋼索預力之分析流程 143
5.4.2 分析結果與探討 145
5.5 小結 164
第六章 預力混凝土脊背橋最佳化分析 165
6.1 前言 165
6.2 脊背橋結構特性與力學行為 167
6.3 脊背橋分析與設計 171
6.4 脊背橋最佳化分析方法與流程 172
6.5 案例分析 175
6.5.1 Case 1完工階段主梁應變能最小為目標函數 181
6.5.2 Case 2最經濟鋼索用量為目標函數 192
6.5.3 Case 3主梁局部應力為目標函數 202
6.6 小結 208
第七章 應用程式開發與介紹 211
7.1 前言 211
7.2 PSO-GA最佳化分析系統 211
7.2.1 系統需求 211
7.2.2 程式設計細節 213
7.3 撓曲及剪力強度計算與檢核模組介紹 214
7.3.1 撓曲強度 215
7.3.2 剪力強度設計與檢核 219
7.4 視覺化模組開發成果 221
7.4.1 撓曲強度檢核模組 221
7.4.2 剪力強度設計檢核模組 223
7.4.3 預力混凝土脊背橋各施工階段應力狀態視覺化模組 225
7.4.4 預力混凝土脊背橋服務階段應力狀態視覺化模組 228
7.5 小結 231
第八章 結論與建議 233
8.1 結論 233
8.2 建議 239
參考文獻 241
作者簡歷 255
論文參考文獻:1. Holland, J. H., Adaptation in Nature and Artificial Systems, University of Michigan Press, Ann Arbor, Mich.,1975.
2. Kennedy, J., Eberhart, R. C., “Pariticle Swarm Optimization”, Proc IEEE International Conference on Netural Networks, IEEE Service Center, 1995, pp. 1942-1948.
3. Eberhart, R. C., Kennedy J., “A New Optimizer using particle swarm theory”, Proceeding of 6th Int Symposium on MicroMachine and Human Science, Nagoya, 1995, pp. 39-43
4. De, J. K. A., An Analysis of the Behavior of a Class of Genetic Adaptive Systems, Ph. D Dissertation, University of Michigan, 1975
5. Goldberg, D. E., “Computer-aided gas pipeline operation using genetic algorithm and rule learning”, Engineering with Computers, Volume 3, Issue 1, pp.35-45, 1987
6. Kennedy, J., Eberhart, R., “Particle swarm optimization”, Proceedings IEEE International Conference on Neural Networks, Volume 4, 1995, pp. 1942-1948
7. Wang, H., Hiroshi, O., “Elasto-plastic analysis based truss optimization using Genetic Algorithm”, Engineering Structures, Volume 50, 2013, pp. 1-12
8. Cheng, J., “Optimum design of steel truss arch bridges using a hybrid genetic algorithm Original Research Article”, Journal of Constructional Steel Research, Volume 66, Issues 8–9, 2010, pp. 1011-1017
9. Vedat, T., Ayse, T. D., “Optimization of 3d trusses with adaptive approach in genetic algorithms Original Research Article” Engineering Structures, Volume 28, Issue 7, 2006, pp. 1019-1027
10. Srinivas, V., Ramanjaneyulu, K.,“An integrated approach for optimum design of bridge decks using genetic algorithms and artificial neural networks Original Research Article”, Advances in Engineering Software, Volume 38, Issue 7, 2007, pp. 475-487
11. Pruettha, N., Konlakarn, M.,“An adaptive penalty function in genetic algorithms for structural design optimization Original Research Article”, Computers & Structures, Volume 79, Issues 29–30, 2001, pp. 2527-2539
12. Semelawy, M. E., Nassef, A.O., Damatty, A. A. E.,“Design of prestressed concrete flat slab using modern heuristic optimization techniques Original Research Article”, Expert Systems with Applications, Volume 39, Issue 5, 2012, pp. 5758-5766
13. Sahab, M. G., Ashour, A. F., Toropov, V. V., “A hybrid genetic algorithm for reinforced concrete flat slab buildings Original Research Article”, Computers & Structures, Volume 83, Issues 8–9, 2005, pp. 551-559
14. Cheng, J.,“An artificial neural network based genetic algorithm for estimating the reliability of long span suspension bridges”, Finite Elements in Analysis and Design, Volume 46, Issue 8, 2010, pp. 658-667
15. Chou, J. H., Ghaboussi, J.,“Genetic algorithm in structural damage detection Original Research Article”, Computers & Structures, Volume 79, Issue 14, 2001, pp. 1335-1353
16. Ribeiro, D., Calcada, R., Delgado, R., Brehm, M., Zabel, V.,“Finite element model updating of a bowstring-arch railway bridge based on experimental modal parameters Original Research Article”, Engineering Structures, Volume 40, 2012, pp. 413-435
17. Jung, D. S., Kim, C. Y.,“Finite element model updating on small-scale bridge model using the hybrid genetic algorithm”, Structure and Infrastructure Engineering, Volume 9, Issue 5, 2013, .pp. 481-495
18. de Castilho, V. C., El Debs, M. K., do Carmo Nicoletti, M.,“Using a modified genetic algorithm to minimize the production costs for slabs of precast prestressed concrete joists”, Engineering Applications of Artificial Intelligence, Volume 20, Issue 4, 2007, pp. 519-530
19. Polprasert, J., Ongsakul, W., Dieu, V. N., “Self-organizing hierarchical particle swarm optimization with time-varying acceleration coefficients for economic dispatch with valve point effects and multifuel options”, 4th Global Conference on Power Control and Optimization, Volume 1337, 2011, pp. 85-92
20. Esmin, A. A. A., Matwin, S., “A hybrid particle swarm optimization algorithm with genetic mutation”, International Journal of Innovative Computing, Information and Control, Volume 9, Issue 5, 2013, pp. 1919-1934
21. Huang, T., Mohan, A. S., “A hybrid boundary condition for robust particle swarm optimization”, IEEE Antennas and Wireless Propagation Letters, Volume 4, Issue 1, 2005, pp. 112-117
22. Liu, T., Zhang, H., Gao, Y., “Solving TSP via fuzzy dynamic PSO and HNN algorithm”, ICCSE 2012 - Proceedings of 2012 7th International Conference on Computer Science and Education, 2012, pp.105-109
23. Coello, C. C. A., “MOPSO: a proposal for multiple objective particle swarm optimization”, Evolutionary Computation, Proceedings of the 2002 Congress, Volume 2, 2002, pp. 1051-1056
24. Ayed, S., Imtiaz, A., Sabah, A. M., “Particle swarm optimization for task assignment problem”, Microprocessors and Microsystems, Volume 26, Issue 8, 2002, pp. 363–371
25. Yoshida, H., Kawata, K., Fukuyama, Y., Takayama, S., “A particle swarm optimization for reactive power and voltage control considering voltage security assessment”, IEEE Transactions on Power Systems, Volume 15, Issue 4, 2000, pp. 1232-1239
26. Li, L. L., Wang, L., Liu, L. H., “An effective hybrid PSOSA strategy for optimization and its application to parameter estimation”, Applied Mathematics and Computation, Volume 179, Issue 1, 2006, pp. 135–146
27. Troitsky, M. S., Cable-stayed bridges: Theory and design, Buter&Tanners Ltd, Frome and Londan, 1988
28. 周孟波,斜拉橋手冊,北京:人民交通出版社,2004
29. Benjamin, E. L., Michael, S. T., Matthew, McC. D.,” Load Balancing Analysis of Cable Stayed Bridges”, Journal of the Structural Division, Volume 92, No. 8, 1972, pp. 1725-1740
30. Kunio, T., Kiyohire, I. and Tomihiko, N., ”A Non-Iterative Optimum Design Method for Cable - Stayed Bridges”, Japan Society of Civil Engineers, Volume 3, No.1, 1986, pp.103-111
31. Wang, P. H., Tseng, T. C., Yang, C. G., “Initial shape of cable-stayed bridges”, Computers & Structures, Volume 46, Issue 6, 1993, pp. 1095–1106
32. Simoes, L. M. C., Negrao, J. H. O.,“Sizing and geometry optimization of cable-stayed bridges”, Computers and Structures, Volume 52, Issue 2, 1994, pp. 309-321
33. Takagi, R., Nakamura T., Nakagawa K.,“A new design technique for pre-stressed loads of a cable-stayed bridge”, Computers & Structures, Volume 58, Issue 3, 1996, pp. 607–612
34. Chen, D. W., Au, F. T. K., Tham, L. G., Lee, P. K. K.,“Determination of initial cable forces in prestressed concrete cable-stayed bridges for given design deck profiles using the force equilibrium method”, Computers & Structures, Volume 74, Issue 1, 2000, Pages 1–9
35. Janjic, D., Pircher, M., Pircher, H.,“Optimization of Cable Tensioning in Cable-Stayed Bridges”, Journal of Bridge Engineering, Volume 8, No. 3, 2003, pp. 131-137
36. 宋裕祺,張荻薇,”斜張橋之最佳化設計”, 中國土木水利學刊,第十卷,第二期,1998,pp. 299-306
37. Sung, Y. C., Chang, D. W., Teo, E. H.,“Optimum post-tensioning cable forces of Mau-Lo Hsi cable-stayed bridge”, Engineering Structures, Volume 28, Issue 10, 2006, pp. 1407-1417
38. Lee, T. Y., Kim, Y. H., Kang, S. W.,“Optimization of tensioning strategy for asymmetric cable-stayed bridge and its effect on construction process”, Structural and Multidisciplinary Optimization , Volume 35, Issue 6, 2008, pp. 623-629
39. Venkat, L., Akhil, U., Singh, K. K.,“Computationally efficient analysis of cable-stayed bridge for GA-based optimization Original Research Article”, Engineering Applications of Artificial Intelligence, Volume 22, Issues 4–5, 2009, pp. 750-758
40. Baldomir, A., Hernandez, S., Nieto, F., Jurado, J. A.,“Cable optimization of a long span cable stayed bridge in La Coruna (Spain)”, Advances in Engineering Software, Volume 41, Issues 7–8, 2010, pp. 931–938
41. Hassan, M. M., Nassef, A. O., El Damatty, A. A.,“Determination of optimum post-tensioning cable forces of cable-stayed bridges”, Engineering Structures, Volume 44, 2012, pp. 248-259
42. Hassan, M. M.,“Optimization of stay cables in cable-stayed bridges using finite element, genetic algorithm, and B-spline combined technique Original Research Article”, Engineering Structures, Volume 49, 2013, pp. 643-654
43. 葛耀君,橋梁分段施工與控制,北京:人民交通出版社,2003年。
44. 雷俊卿,橋梁懸臂施工與設計,北京:人民交通出版社,2000年。
45. 徐君藍,大跨度橋梁施工控制,北京:人民交通出版社,2000年。
46. 向中富,橋梁施工控制技術,北京:人民交通出版社,2001年。
47. 顧安邦,張永水,橋梁施工監測與控制,北京:機械工業出版社,2005年。
48. 秦順全,橋梁施工控制-無應力狀態法理論與實踐,北京:人民交通出版社,2007年
49. 李喬,卜一之,張清華,大跨度斜拉橋施工全過程幾何控制概念與應用,成都:西南交大出版社,2009年
50. 張繼堯,王昌將,懸臂澆築預應力混凝土連續梁橋,北京:人民交通出版社,2004
51. Smith, B. W., “Developing an erection scheme for a large bridge”, Computer-Aided Design, Volume 10, Issue 4, 1978, pp. 263-268
52. Tadros, M. K., Ghali, A., Dilger, W.,“Long Term Stresses and Deformation of Segmental Bridges”, Journal of the Prestressed Concrete Institute, Volume 24, Issue 4, 1979, pp. 66-87
53. Behin, Z., Murray, D. W.,“A substructure-frontal technique for cantilever erection analysis of cable-stayed bridges”, Computers and Structures, Volume 42, Issue 2, 1992, pp. 145-157
54. Nakayama, H., Kaneshige, K., Takemoto, S., Watada, Y., “An application of a multi-objective programming technique to construction accuracy control of cable-stayed bridges”, European Journal of Operational Research, Volume 87, Issue 3, 1995, pp. 731-738
55. Cruz , P. J. S., Mari, A. R., Roca, P., “Nonlinear Time-Dependent Analysis of Segmentally Constructed Structures”, Journal of Structural Engineering, Volume 124, No. 3, 1998, pp. 278-287
56. Reddy, P., Ghaboussi, J., Hawkins, N. M.,“Simulation of construction of cable-stayed bridges”, Journal of Bridge Engineering, Volume 4, Issue 4, 1999, pp. 249-257
57. Furuta, H., Kawamura, Y., Arimura, H., and Takase, K.,“Cable Tension Control of Tsuneyoshi Bridge Using Multi-Objective Genetic Algorithm”, Advanced Technology in Structural Engineering, Structures Congress 2000, Philadelphia, Pennsylvania, United States, 2000, pp. 1-8
58. Kwak, H. G., Son, J. K.,“Determination of design moments in bridges constructed by balanced cantilever method”, Engineering Structures, Volume 24, Issue 5, 2002, pp. 639-648
59. 秦順全, “斜拉橋安裝無應力狀態控制法”,橋梁建設,Volume 2, 2003
60. Wang , P. H., Tang, T. Y., Zheng , H. N., “Analysis of cable-stayed bridges during construction by cantilever methods”, Computers & Structures, Volume 82, Issues 4–5, 2004, pp. 329–346
61. Sungmoon, J., Jamshid, G., Camilo, M.,“Field calibration of time-dependent behavior in segmental bridges using self-learning simulation”, Engineering Structures, Volume 29, Issue 10, 2007, pp. 2692–2700
62. Somja, H., Goyet, V.,“A new strategy for analysis of erection stages including an efficient method for creep analysis”, Engineering Structures, Volume 30, Issue 10, 2008, pp. 2871–2883
63. Malm, R., Sundquist, H.,“Time-dependent analyses of segmentally constructed balanced cantilever bridges”, Engineering Structures, Volume 32, Issue 4, 2010, pp. 1038-1045
64. Arici, M., Granata, M.F., Recupero, A.,“The influence of time-dependent phenomena in segmental construction of concrete cable-stayed bridges”, Bridge Structures, Volume 7, Issue 4, 2011, pp. 125-137
65. Tian, W., Saeed, A. T., Yang, J.,“Calculation of tension in cables for construction of arch bridge using perturbation method”, Journal of Convergence Information Technology, Volume 7, Issue 18, 2012, pp. 100-108
66. Ates, S.,“Numerical modelling of continuous concrete box girder bridges considering construction stages”, Applied Mathematical Modelling, Volume 35, Issue 8, 2011, pp. 3809-3820
67. Atmaca, B., Ates, S., “Construction stage analysis of three-dimensional cable-stayed bridges”, Steel and Composite Structures, Volume 12, Issue 5, 2012, pp. 413-426
68. Yang, J. H., Im, D. K., Kim, C. H., Ahn, S. S., Lee, W. S.,“Construction and geometry control of Incheon cable-stayed bridge”, Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE), Volume 22, Issue 1, 2012, pp. 49-52
69. Pipinato, A., Pellegrino, C., Modena, C.,“Structural Analysis of the Cantilever Construction Process in Cable-Stayed Bridges”, Periodica Polytechnica: Civil Engineering, Volume 56, Issue 2, 2012, pp. 141-166
70. Huang, Y., Bao, T. and Wang, H., “Forward-Calculating Optimization Method for Determining the Rational Construction State of Cable-Stayed Bridges”, Advanced Materials Research, Volumes 671 – 674, 2013, pp. 980-984
71. Ikeda, S., Kasuga, A., “Development of extradosed structures in the bridge construction”, 25th Conference on OUR WORLD IN CONCRETE & STRUCTURES, Singapore, 2000.
72. Kasuga, A., “Extradosed bridges in Japan”, Structural Concrete, Volume 7, Issue 3, 2006, pp. 91-103
73. Konstantios K. M., Behavior and Design of Extradosed Bridges, Master Thesis, University of Toronto, 2008
74. Akiyama, H., Nakayama, M., Kayanoki, H.,“Extradosed prestressed concrete bridge with High-strength concrete, Japan-Yumekake bridge”, Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE), Volume 21, Issue 3, 2011, pp. 366-371
75. Bi, H., Li, Y.,“The length optimization of non-stayed cable segment to low-pylon cable-stayed bridge”, Key Engineering Materials, Volume 540, 2013, pp. 131-139
76. Jun, S., Jianting, Z., Jianxi, Y., Zengshun, C.,“Based on the theory of reliability high piers short towers cable-stayed bridge characteristic parameter analysis”, Modern Applied Science, Volume 7, Issue 4, 2013, pp. 41-46
77. 盧險峰,最佳化方法應用基礎,上海:同濟大學出版社,2003
78. 陳國良,王煦法,庄鎮泉,王東生,遺傳演算法及其應用,北京:人民郵電出版社,1996
79. Goldberg, D. E., Computer-aided gas pipeline operation using genetic algorithm and rule learning, Doctoral dissertation, University of Michigan, 1983
80. 周明,孫樹棟,遺傳演算法原理及應用,北京:國防工業出版社,1999
81. 林俊良,智慧型控制,台北:全華圖書股份有限公司,2007
82. 李敏强,寇紀淞,林丹,李書全,遺傳演算法的基本理論與應用,北京:科學出版社,2002
83. 蘇進國,模糊遺傳演算法在橋梁耐震性能設計之應用與耐震維修補強生命週期成本最小化之研究,國立台北科技大學工程科技研究所博士論文,2008
84. Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P., “Optimization by Simulated Annealing”, Science, Volume 220, No. 4598, 1983, pp. 671-680
85. Millonas, M. M., “Swarms, Phase Transitions and Collective Intelligence”, C.G. Langton Ed. Artifical Life III. Addison Wesley, Reading MA, 1994, pp. 417-455
86. 雷秀娟,群智能優化算法及其應用,北京:科學出版社,2012
87. 紀震,廖惠連,吳青華,粒子群算法及應用,北京:科學出版社,2009
88. 李麗,牛奔,粒子群優化算法,北京:冶金工業出版社,2009
89. Shi , Y. H., Eberhart, R. C., “Parameter Selection in Particle Swarm Optimization”, Proceedings of the 7th International Conference on Evolutionary Programming VII, 1998, pp. 591-600
90. Clerc, M., “The swarm and the queen: towards a deterministic and adaptive particle swarm optimization”, Proceedings of the 1999 IEEE Congress on Evolutionary Computation, Volume 3, 1999, pp. 1951-1957
91. James, K., “Population structure and particle swarm performance”, Proceedings of the Congress on Evolutionary Computation, Volume 2, 2002, pp.1671-1676
92. 梁醒培,王輝,基於有限元素法的結構優化設計-原理與工程應用,北京:清華大學出版社,2010
93. 李裕華,結構優化設計通用程序系統SAPOP例題集,西安交通大學,1986
94. Felix, T. S. C. , Monj, K. T., Swarm Intelligence: Focus on Ant and Particle Swarm Optimization, I-Tech Education and Publishing, 2007
95. Gellatly, R., Berke, L., “Optimal Structural Design”, Tech Rep AFFDLTR-70-165, Air Force Flight Dynamics Laboratory(AFFDL),1971
96. Schimit, L., Miura, H., “A new structural analysis/synthesis capability: access 1”, AIAA Journal, Volume 14, Issue 5, 1976, pp.661-671
97. Ghasemi, M., Hinton, E., Wood, R., “Optimization of trusses using genetic algorithms for discrete and continuous variables”, Engineering Computations, Volume 16, Issue 3, 1999, pp. 272-301
98. Schimit, L., Farshi, B., “Some Approximation Concepts for Structural Synthesis”, AIAA Journal, Volume 12, No. 5, 1974, pp. 692-699
99. Dobbs, M., Nelson, R., “Application of optimality criteria to automated structural design”, AIAA Journal, Volume 14, No. 10, 1976, pp.1436-1443
100. Esmin, A.A.A., Lambert, T. G., Alvarenga, G. B., “Hybrid Evolutionary Algorithm Based on PSO and GA mutation”, 6th International Conference on Hybrid Intelligent Systems and 4th Conference on Neuro-Computing and Evolving Intelligence, 2006, pp. 57
101. Shia, X. H., Lianga, Y. C., Lee, H. P., Lub, C., Wang, L. M. Wang, “An improved GA and a novel PSO-GA-based hybrid algorithm”, Information Processing Letters, Volume 93, Issue 5, 2005, pp. 255-261
102. Na, D., Wu, C. H., Ip, W. H., Chen, Z. Q., Chan, C, Y, Yung, K. L., “An opposition-based chaotic GA/PSO hybrid algorithm and its application in circle detection”, Computers & Mathematics with Applications, Volume 64, Issue 6, 2012, pp. 1886-1902
103. 邵旭東,程翔雲,李立峰,橋梁設計與計算,北京:人民交通出版社,2007
104. 劉士林,王似舜,斜拉橋設計,北京:人民交通出版社,2006
105. Novost, R., 2012, Vladivostok cable-stayed bridges, http://www.english.ruvr.ru/2012_09_05/Vladivostok-cable-stayed-bridges-get-their-names/
106. Walther, R., Cable Stayed Bridges, Thomas Telford, 1988
107. 宋裕祺,蘇進國,張荻薇,”有限元素法在鋼斜張橋分析之應用”,中日鋼結構工程研討會,2007
108. 張荻薇,王炤烈,張英發,游明益,宋裕祺,”具斜塔柱非對稱跨徑鋼斜張橋之設計與施工-台北市社子大橋新建工程”,中華技術,No. 89,2011,pp.38-51
109. 鄭存迪,鋼索懸臂架設橋梁施工階段結構分析之研究,國立台北科技大學土木與防災研究所碩士論文,2010
110. 林佑川,基因演算法和人工類神經網路在斜張橋最佳化設計及健康診斷之應用,國立台北科技大學土木與防災研究所碩士論文,2005
111. 大塚久哲,長大斜張橋の解析と設計,部定式斜張橋研究会 編,日本:九州大学出版会発行,1991
112. Guo, X., Wang, J., Wu, T., “ Application of Kalman’s Filtering Method in Construction Control for Cable Replacement of The Cable-Stayed Bridge”, International Conference on Electrical and Control Engineering(ICECE), 2011, pp. 471-475
113. Alam, S. M. S, Yamada, K., Baba, S., ” A Kalman filter approach for galloping control of a bridge tower”, Computers & Structures, Volume 57, Issue 1, 1995, pp. 67–79
114. Huang, Y., Bao, T., Wang, H., “Application of Bridge Construction Control Based on Gray System Theory Modified by Kalman Filtering Method”, Advanced Materials Research, Volumes 671 – 674, 2013, pp. 2049-2052
115. Zhang, Y. Y., “Approach to grey prediction model of structural state of large span reinforced concrete continuous beam bridge”, 3rd International Conference on Intelligent System Design and Engineering Applications, 2013, pp. 377-381
116. 鄭明源,陳新之,劉珊,陳明谷,”國內首座多塔連續脊背橋-台9線壽豐溪豐平橋”,中華技術,No. 89, 2011,pp. 52-59
117. 國道6號南投段工程脊背式橋梁專輯-愛蘭交流道聯絡道南港溪橋,交通部臺灣區國道新建工程局,2009
118. Cassiopeia S., The Odawara Blue Way Bridge, 2007, http://commons.wikimedia.org/wiki/File%3AOdawara-Blue-Way-Bridge.jpg
119. 黃炳勳、蘇進國、邱毅宗、張達新、宋裕祺,”脊背橋主梁內部錨碇鋼箱採無銲接金屬接觸套疊之設計與分析”,結構工程,第27卷,第四期, 2012, pp. 3-28
120. CEB-FIP Model Code, International Federation for Structural Concrete, Telford edition,1993
121. 交通部,公路橋梁設計規範,2009
122. Japan Prestressed Concrete Engineering Association, Specifications for Design and Construction of Prestressed Concrete Cable-Stayed Bridges and Extradosed Bridges, November, 2000 (In Japanese).
123. 交通部臺灣區國道新建工程局,橋梁及結構工程設計注意事項,2008
124. 賴明俊,鋼筋混凝土建築物耐震能力評估系統之補強模組與視覺化展示功能開發,國立台北科技大學工程科技研究所博士論文,2013
125. 許家銓,地震防災管理系統建置之研究,國立台北科技大學工程科技研究所博士論文,2013
126. Edward, G. N. Prestressed Concrete, Prentice Hall, 2009
127. 涂照明,彭詩懿,預力混凝土設計,台北:高立圖書有限公司,1997
128. 林樹柱,預力混凝土設計及施工,台北:弘揚圖書,2009
129. 李國平,橋梁預應力混凝土技術及設計原理,北京:人民交通出版社,2004
130. Raymond, I. G., Gianluca, R., Time-Dependent Behavior of Concrete Structures, CRC Press, 2010
131. 王俊穎,粘晉銘,宋裕祺,蔡益超,黃炳勳,戚樹人,”預力混凝土橋梁分析及設計輔助系統之建置,中華民國第十一屆結構工程研討會暨第一屆地震工程研討會,2012
論文全文使用權限:同意授權於2015-08-20起公開