現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:合乎台灣本土地震特性之單自由度等值線性系統之建立及其應用 [以論文名稱查詢館藏系統]
論文英文名稱:Establishment and Application of Linear SDOF Equivalent System Conforming to Local Earthquake Characteristics in Taiwan [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
中文姓名:林正修
英文姓名:Cheng-Hsiu Lin
研究生學號:92428021
學位類別:碩士
語文別:中文
口試日期:2005-06-20
論文頁數:265
指導教授中文名:宋裕祺
口試委員中文名:林聰悟;蔡益超;呂良正
中文關鍵詞:等值線性韌性比等值阻尼等值勁度譜加速度譜位移
英文關鍵詞:Equivalent LinearizationDuctilityEquivalent DampingEquivalent StiffnessSpectral AccelerationSpectral Displacement
論文中文摘要:非線性動力歷時分析係評估結構物非線性行為的基本方法,由於分析方式過程繁瑣、複雜,所需時間較長,除非針對特殊目的的結構安全檢核外,該法較不被一般熟悉線性分析的工程師所樂用。等值線性系統具有觀念簡潔,便於使用等優點,目前廣泛應用於結構非線性分析當中。ATC-55指出目前的研究,對於等值線性系統中有關等值阻尼與等值勁度之最佳化組合,尚未獲得令人滿意的答案。為有效解決此問題,本文將建構一套合理的分析方法,針對國內各個地震測站所蒐集到的地震紀錄進行等值線性系統的分析,並就分析結果進行非線性迴歸,以供為結構分析之用。
本文以集集大地震各地震測站所蒐集到的原始加速度歷時資料(Original Time History),及與規範反應譜相諧和(Spectrum Compatible)之人造加速度歷時資料,針對結構週期分別為0.3秒(短週期)及1.0秒(長週期)之結構物為對象,進行線性與非線性歷時分析。本文探討內容主要分為三部份:第一部份著重於韌性比與譜加速度修正係數關係的建立;第二部份在於尋找韌性比與等值勁度、等值阻尼比的關係;第三部份則進一步探討正規化譜加速度與譜位移的關係。
本文針對各地震測站所建立的等值線性系統迴歸成果,除可符合考量國內本土地震特性的結構非線性分析之所需外,更希望能供為國內有關結構性能耐震設計規範編訂時參考之用。
論文英文摘要:Nonlinear Time History Analysis is the basic method to appraise the structural nonlinear behavior. Because of its tedious and complex analysis process, this method is not extensively used by the engineers who are commonly familiar with linear analytical method. Equivalent linear system (ELS), whereas, is very popularly used in structural nonlinear analysis for its simplicity and convenience. As a result, a rational analytical method will be established in this thesis to process ELS according to data collected from domestic earthquake survey station.
Original time history recorded from Chi-Chi earthquake and artificial spectrum compatible time history are all used for linear and nonlinear time history analyses aiming at structures of structural period of 0.3s (short period) and 1.0s (long period), respectively. The content discussed comprises of three parts: the first one is the establishment of the relationships between ductility ratio and modification coefficient of spectral acceleration; the second one is the formation to link ductility ratio and equivalent stiffness and damping. Finally, the discussion of normalized acceleration spectrum and displacement spectrum (NASD) is also further made.
The analytical results obtained in this thesis might provide the useful reference for the revise of the structural design code on seismic-resisting.
論文目次:目 錄

中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 ix
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究內容與方法 2
第二章 文獻回顧 4
2.1 前言 4
2.2 等值線性系統之研究概況 5
2.2.1 使用等值勁度與等值阻尼比之相關研究 5
2.2.1.1 Rosenblueth & Herreray 6
2.2.1.2 Gulkan & Sozen 7
2.2.1.3 Iwan 7
2.2.1.4 Kowalsky 7
2.2.1.5 Priestley 7
2.2.1.6 Iwan & Guyader 8
2.2.1.7 Miranda & Lin 8
2.2.1.8 FEMA-440 8
2.2.2 柴田明德教授建議之最佳化分析方式 11
2.2.3 日本建築研究振興協會之建議方案 14
2.2.4 使用初始勁度與初始阻尼比之相關研究 16
2.2.4.1 Veletso & Newmark 17
2.2.4.2 Vidic 17
2.2.4.3 Miranda 18
2.3 等值線性系統之應用 19
2.3.1 譜加速度修正係數 19
2.3.1.1 ATC-40譜加速度修正係數之訂定 20
2.3.1.2 日本建築研究振興協會有關譜加速度修正係數
之訂定 22
2.3.1.3 Newmark & Hall 等能量與等位移原則 22
2.3.1.4 國內譜加速度修正係數之訂定 22
2.3.2 位移係數法(DCM) 26
2.3.3 直接容量譜法(DCSM) 27
2.3.3.1 最大位移反應之對應容量震譜 27
2.3.3.2 降伏點之對應容量震譜 27
2.4 討論 27
第三章 等值線性系統分析流程 29
3.1 概論 29
3.2 非線性動力歷時分析方法 30
3.3 分析流程 34
3.3.1 NSPECTRA程式介紹 34
3.3.2 NSPECTRA程式修改 37
3.3.3 計算分析流程 40
3.4 非線性迴歸分析 43
第四章 不考慮近斷層效應之等值線性系統 46
4.1 相關測站整理 46
4.2 原始地表加速度歷時資料分析結果 49
4.2.1 韌性比與譜加速度修正係數之分析 49
4.2.1.1 結構週期為0.3秒(短週期)之分析結果 49
4.2.1.2 結構週期為1.0秒(長週期)之分析結果 54
4.2.2 韌性比與等值阻尼比之分析 59
4.2.2.1 結構週期為0.3秒(短週期)之分析結果 60
4.2.2.2 結構週期為1.0秒(長週期)之分析結果 65
4.2.3 正規化譜加速度與譜位移之分析 70
4.3 與規範反應譜相諧和之人造加速度歷時資料分析結果 70
4.3.1 韌性比與譜加速度修正係數之分析 70
4.3.1.1 結構週期為0.3秒(短週期)之分析結果 70
4.3.1.2 結構週期為1.0秒(長週期)之分析結果 76
4.3.2 韌性比與等值阻尼比之分析 81
4.3.2.1 結構週期為0.3秒(短週期)之分析結果 81
4.3.2.2 結構週期為1.0秒(長週期)之分析結果 87
4.3.3 正規化譜加速度與譜位移之分析 93
4.4 結果與比較 93
第五章 近斷層效應之等值線性系統 99
5.1 相關測站整理 99
5.2 近斷層之原始加速度歷時資料分析結果 99
5.2.1 韌性比與譜加速度修正係數之分析 99
5.2.1.1 結構週期為0.3秒(短週期)之分析結果 99
5.2.1.2 結構週期為1.0秒(長週期)之分析結果 100
5.2.2 韌性比與等值阻尼比之分析 101
5.2.2.1 結構週期為0.3秒(短週期)之分析結果 101
5.2.2.2 結構週期為1.0秒(長週期)之分析結果 102
5.2.3 正規化譜加速度與譜位移之分析 103
5.3 結果與比較 103
第六章 正規化譜加速度與譜位移關係建立 105
6.1 前言 105
6.2 正規化譜加速度與譜位移之應用 106
6.3 NSAD在結構耐震能力評估之應用 108
6.3.1 改良式耐震能力評估法 108
6.3.2 NSAD應用於耐震能力評估之方法介紹 109
6.4 NSAD在結構性能耐震設計之應用 110
6.5 實例分析 113
第七章 結論與建議 122
7.1 結論 122
7.2 建議 123
參考文獻 125
附錄A 部分韌性比與譜加速度修正係數分析結果圖 133
附錄B 部分韌性比與等值勁度、等值阻尼分析結果圖 158
附錄C 部分正規化譜加速度與譜位移之分析結果圖 177
附錄D 各類地盤分析結果圖 253
論文參考文獻:[1] Akkar, S., and Gulkan, S. (2000). “Comparative performance evaluation of displacement based design procedures for near field earthquakes,” Proceedings of the 12th World Conference on Earthquake Engineering, New Zealand Society for Earthquake Engineering, Upper Hutt, New Zealand.
[2] Akkar, S. D., and Miranda, E. (2005). “Statistical Evaluation of Approximate Methods for Estimating Maximum Deformation Demands on Existing Structures,” ASCE, Journal of Structural Engineering, Vol. 131, No. 1, pp. 160-172.
[3] ATC-40. (1996). “Seismic Evaluation and Retrofit of Concrete Building,” Appiled Technology Council, Redwood City, California U.S.A.
[4] ATC-55. (2001). “Evaluation and Improvement of Inelastic Seismic Analysis Procedures,” Appiled Technology Council, Redwood City, California U.S.A.
[5] Baez, J. I., and Miranda, E. (2000). “Amplification factors to estimate inelastic displacement demands for the design of structures in the near field,” Proceedings of the 12th World Conference on Earthquake Engineering, New Zealand Society for Earthquake Engineering, Upper Hutt, New Zealand.
[6] Blandon, C. A. (2004). “Equivalent Viscous Damping Equations for Direct Displacement Based Design,” Istituto Universitario di Studi Superiori, pp. 1-58.
[7] Bor-Feng Peng, and Conte, J. P. (1997). “Statistic Insight Into Constant-Ductility Design Using A Non-Stationary Earthquake Ground Motion Model,” Earthquake Engineering & Structural Dynamics, Vol. 26, pp. 895- 916.
[8] Chai, Y. H., Fajfar, P., and Romstad, K. M. (1998). “Formulation of Duration-Dependent Inelastic Seismic Design Spectrum,” ASCE, Journal of Structural Engineering, Vol. 124, No. 8, pp. 913-921.
[9] Chopra, A. K. (1996). “Modal Analysis of Linear Dynamic Systems Physical Interpretation,” ASCE, Journal of Structural Engineering, Vol. 122, No. 5, pp. 517-527.
[10] Chopra, A. K., and Goel, R. K. (2000). “Evaluation of NSP to Estimate Seismic Deformation:SDF Systems,” ASCE, Journal of Structural Engineering, Vol. 126, No. 4, pp. 482-490.
[11] Chopra, A. K., and Chintanapakdee, C. (2004). “Inelastic Deformation Ratios for Design and Evaluation of Structures: Single-Degree-of-Freedom Bilinear Systems,” ASCE, Journal of Structural Engineering, Vol. 130, No. 9, pp. 1309-1319.
[12] Christopoulos, C., Filiatrault, A., and Folz, B. (2001). “Seismic response of self-centring hysteretic SDOF systems,” Earthquake Engineering & Structural Dynamics, Vol. 31, Issue 5, pp. 1131-1150.
[13] Emam, H. H., Pradlwarter, H. J., and Schueller, G. I. (2000). “A computational procedure for the implementation of equivalent linearization in finite element analysis,” Earthquake Engineering & Structural Dynamics, Vol. 29, Issue 1, pp. 1-17.
[14] Fajfar, P., and Vidic, T. (1994). “Consistent Inelastic Design Spectra: Hysteretic and Input Energy,” Earthquake Engineering and Structural Dynamics, Vol. 23, pp. 523-537.
[15] Farrow, K. T., and Kurama, Y. C. (2003). “SDOF Demand Index Relationships for Performance-Based Seismic Design,” Earthquake Engineering Research Institute, Earthquake Spectra, Vol. 19, No. 4, pp. 799-838.
[16] FEMA 273. (1997). “NEHRP Guidelines for the Seismic Rehabilitaion of Building,” Federal Emergency Management Agency, Washington U.S.A.
[17] FEMA 440. (2004). “Improvement of Nonlinear Static Seismic Analysis Procedures,” Federal Emergency Management Agency, Washington U.S.A.
[18] Glaister, S. D., and Dr Rui Pinho. (2002). “Development of a Simplified Method for Displacement-Based Earthquake Loss Estimation Analysis,” Istituto Universitario di Studi Superiori di Pavia, pp. 1-50.
[19] G.regory, A. M., Daniel, V. M, and Charles, W. R. (2001). “Near-Fault Ground Motion Effects on Simple Structures,” ASCE, Journal of Structural Engineering, Vol. 127, No. 9, pp. 996-1004.
[20] Gulkan, P., and Sozen, M. A. (1974). “In-elastic Responses of Reinforced Concrete Structures to Earthquake Motions,” Proceedings of the American Concrete Institute, Vol. 71, No. 12, pp. 605-610.
[21] Hutchinson, G. L., Lam, N. T. K., and Wilson, J. L. (2003). “Determination of earthquake loading and seismic performance in intraplate regions,” Progress in Structural Engineering and Materials, Vol. 5, Issue 3, pp. 181-194.
[22] Hwang, J. S. (1996). “Evaluation of Equivalent Linear Analysis Methods of Bridge Isolation,” ASCE, Journal of Structural Engineering, Vol. 122, No. 8, pp. 972-976.
[23] Isabel, C., and Mark, A. A. (2001). “Inelastic Response Spectra Using Conventional and Pulse R-Factors,” ASCE, Journal of Structural Engineering, Vol. 127, No. 9, pp. 1013-1020.
[24] Iwan, W. D., and Gates, N. C. (1979). “Estimating Earthquake Response of Simple Hysteretic Structures,” ASEC, Journal of the Engineering Mechanics Division, Vol. 105, pp. 391-405.
[25] Iwan, W. D., Huang, C. T., and Guyader, A. C. (2000). “Important Features of the Response of Inelastic Structures to Near-field Ground Motion,” Proceedings of the 12th World Conference on Earthquake Engineering, New Zealand Society for Earthquake Engineering, Upper Hutt, New Zealand.
[26] Jacobsen, L. S. (1930). “Steady Forced Vibration as Influenced by Damping,” American Society of Mechanical Engineering, Vol. 51.
[27] Jerry Shen, Meng-Hao Tsai, Kuo-Chun Chang, and George C. Lee. (2004). “Performance of a Seismically Isolated Bridge under Near-Fault Earthquake Ground Motions,” ASCE, Journal of Structural Engineering, Vol. 130, No. 6, pp. 861-868.
[28] Joan, G., Paul, B., and Paul, A. R. (2003). “Observing Earthquakes Triggered in the Near Field by Dynamic Deformations,” Bulletin of the Seismological Society of America, Vol. 93, No. 1, pp. 118–138.
[29] Kenji FUJII, Yoshiaki NAKANO, and Yasushi SANADA. (2003). “A simplified nonlinear analysis procedure for single-story asymmetric buildings,” Journal of Japan Association for Earthquake Engineering, Vol. 4, No. 2, pp. 1-20.
[30] Kevin, K. F., Wong, and Rong Yang. (2002). “Earthquake Response and Energy Evaluation of Inelastic Structures,” ASCE, Journal of Engineering Mechanics, Vol. 128, No. 3, pp. 308-317.
[31] Kowalsky, M. J., Priestley, M.J.N., and McRae G.A. (1995). “Displacement-based Design of RC Bridge Columns in Seismic Regions,” Earthquake Engineering & Structural Dynamics, pp.1623-1643.
[32] Kowalsky, M. J. (2000). “Deformation Limit States for Circular Reinforced Concrete Bridge Columns,” ASCE, Journal of Structural Engineering, Vol. 126, No. 8, pp. 869-878.
[33] Kowalsky, M. J. (2003). “A displacement-based approach for the seismic design of continuous concrete bridges,” Earthquake Engineering & Structural Dynamics, Vol. 31, Issue 3, pp. 719-747.
[34] Kunnath, S. K., and Chai, Y. H. (2003). “Cumulative damage-based inelastic cyclic demand spectrum,” Earthquake Engineering & Structural Dynamics, Vol. 33, Issue 4, pp. 449-520.
[35] Luis, D. D.,Silvia, B., and Fabrizio, M. (2004). “Role of Damage Functions in Evaluation of Response Modification Factors,” ASCE, Journal of Structural Engineering, Vol. 130, No. 9, pp. 1298-1308.
[36] Michael, A. T., Jun Zhao, K. Balaji Rao, and Ahsan, K. (1997). “Equivalent Statistical Quadratization and Cubicization for Nonlinear Systems,” ASCE, Journal of Engineering Mechanics, Vol. 123, No. 5, pp. 512-523.
[37] Michael, A. T., Jun Zhao, and Ahsan, K. (1997). “Equivalent Statistical Cubicization for System and Forcing Nonlinearities,” ASCE, Journal of Engineering Mechanics, Vol. 123, No. 8, pp. 890-893.
[38] Miranda, E. (2000). “Inelastic Displacement Ratios for Structures on Firm Sites,” ASCE, Journal of Structural Engineering, Vol. 126, No. 10, pp. 1150-1159.
[39] Miranda, E. (2001). “Estimation of Inelastic Deformation Demands of SDOF Systems,” ASCE, Journal of Structural Engineering, Vol. 127, No. 9, pp. 1005-1012.
[40] Miranda, E., and Ruiz-García, J. (2001). “Evaluation of approximate methods to estimate maximum inelastic displacement demands,” Earthquake Engineering & Structural Dynamics, Vol. 31, Issue 3, pp. 539-560.
[41] Miranda, E., and Ruiz-García, J. (2002). “Inelastic Displacement Ratios for Evaluation of Existing Structures,” Engineering Structures ,Vol. 24, pp. 1271-1281
[42] Miranda, E., and Ruiz-Garcia, J. (2002). “Evaluation of Approximate Methods to Estimate Maximum Inelastic Displacement Demands,” Earthquake Engineering and Structural Dynamics, Vol. 31, pp. 539-560.
[43] Miranda, E., and Akkar, S. D. (2003). “Dynamic Instability of Simple Structural Systems,” ASCE, Journal of Structural Engineering, Vol. 129, No. 12, pp. 1722-1726.
[44] Norio Hori, and Norio Inoue. (2002). “Damaging properties of ground motions and prediction of maximum response of structures based on momentary energy response,” Earthquake Engineering & Structural Dynamics, Vol. 31, Issue 9, pp. 1657-1679.
[45] Pagnini, L. C., and Solari, G. (1999). “Stochastic analysis of the linear equivalent response of bridge piers with aseismic devices,” Earthquake Engineering & Structural Dynamics, Vol. 28, Issue 5, pp. 543 - 560.
[46] Peter, F. (2003). “Capacity spectrum method based on inelastic demand spectra,” Earthquake Engineering & Structural Dynamics, Vol. 28, Issue 9, pp. 979-993.
[47] Phaiboon, P. (2004). “Evaluation of site-dependent constant-damage design spectra for reinforced concrete structures,” Earthquake Engineering & Structural Dynamics, Vol. 33, Issue 12, pp. 1211-1231.
[48] Piero, C, Maurizio, P. (1997). “Hysteretic Behavior Characterization of Friction-Damped Braced Frames,” ASCE, Journal of Structural Engineering, Vol. 123, No. 8, pp. 1020-1028.
[49] Pol, D. S, Giuseppe, F., and Mario, D. P. (2003). “Spectral Approach to Equivalent Statistical Quadratization and Cubicization Methods for Nonlinear Oscillators,” ASCE, Journal of Engineering Mechanics, Vol. 129, No. 1, pp. 31-42.
[50] Priestley, M.J.N., Kowalsky, M., Ranzo, G., and Benzoni, G. (1996). “Preliminary Development of Direct Displacement-based Design for Multi-degree of Freedom Systems,” Proceedings 65th Annual Convention, SEAOC, Maui, Hawaii.
[51] Ramiro, V., and Michel, B. (2004). “Seismic Response of Single Degree of Freedom Structural Fuse Systems,” World Conference on Earthquake Engineering, Vancouver, B.C., Canada, No. 3277.
[52] Reddy, C. K., and Pratap, R. (2000). “Equivalent Viscous Damping for Bilinear Hysteretic Oscillator,” ASCE, Journal of Engineering Mechanics, Vol. 126, No. 11, pp. 1189-1196.
[53] Reinhorn, A. M., Barron, R. Valles, R.E., and Sivaselvan, M.V. (1998) “Nonlinear Analysis Program for Inelastic Spectra with Degradation and Deterioration of Structural Systems,” University at Buffalo, State University of New York.
[54] Roberto, V. (1996). “Simplified Response-Spectrum Seismic Analysis of Nonlinear Structures,” ASCE, Journal of Engineering Mechanics, Vol. 122, No. 3, pp. 282-285.
[55] Rosenblueth, E., and Herrera, I. (1964). “On a Kind of Damping,” ASCE, Journal of Engineering Mechanics, pp. 37-48.
[56] Ruiz-García, J., and Miranda, E. (2002). “Inelastic Displacement Ratios for Evaluation of Existing Structures,” Earthquake Engineering & Structural Dynamics, Vol. 32, Issue 18, pp. 1237-1258.
[57] Thomas, P. (1999). “A Simple Seismic Design Strategy Based on Displacement and Ductility Compatibility,” Earthquake Engineering & Engineering Seismology, Vol. 1, pp. 51-67.
[58] Tommaso, A, Camillo, N., and Ivo, V. (2003). “A simplified procedure to assess the seismic response of nonlinear structures,” Earthquake Engineering Research Institute, Stati Uniti, Vol.16, No. 4.
[59] Vidic, T., Fajfar, P., and Fischinger, M. (1994). “Consistent Inelastic Design Spectra: Strength and Displacement,” Earthquake Engineering & Structural Dynamics, Vol. 23, pp. 507-521.
[60] Wen-Hsiung Lin, and Chopra, A. K. (2002). “Earthquake response of elastic SDF systems with non-linear fluid viscous dampers,” Earthquake Engineering & Structural Dynamics, Vol. 31, Issue 9, pp. 1623-1642.
[61] Wen-Hsiung Lin, and Chopra, A. K. (2003). “Earthquake Response of Elastic Single-Degree-of-Freedom Systems with Nonlinear Viscoelastic Dampers,” ASCE, Journal of Engineering Mechanics, Vol. 129, No. 6, pp. 597-606.
[62] Williams, M.S., and Albermani, F. (2003). “Evaluation of displacement-based analysis and design methods for steel frames with passive energy dissipators,” Civil Engineering Research Bulletin No. 24, pp. 1-54.
[63] Wing-Pin Kwan, and Billington, S. L. (2003). “Influence of Hysteretic Behavior on Equivalent Period and Damping of Structural Systems,” ASCE, Journal of Structural Engineering, Vol. 129, No. 5, pp. 576-585.
[64] Whittaker, A. , Constantinou, M. , and Tsopelas, P. (1999). “Nonlinear procedures for seismic evaluation of buildings,” The Structural Design of Tall Buildings, Vol. 8, no. 1, pp. 1-13.
[65] Xiao-Ming Li, Ser-Tong Quek, and Chan-Ghee Koh. (1995). “Stochastic Response of Offshore Platforms by Statistical Cubicization,” ASCE, Journal of Engineering Mechanics, Vol. 121, No. 10, pp. 1056-1068.
[66] Yu-Chi Sung, Chin-Kuo Su, Chuan-Wei Wu, and I-Chau Tsai, “Performance-Based Damage Assessment of Low-Rise Reinforced Concrete Buildings”, the Journal of China Institute of Engineer. (In Press)
[67] Yu-Chi Sung, Kuang-Yen Liu, Chin-Kuo Su, I-Chau Tsai, and Kuo-Chen Chang ,” A Study on Pushover Analyses of Reinforced Concrete Columns”,the International Journal of Structural Engineering and Mechanics. (In Press)
[68] Yu-Chi Sung, and I-Chau Tsai. (2002). “A New Approach to Performance Based Seismic Evaluation for Bridges”, Tokyo Institute of Technology, pp. 293-305.
[69] Yu-Yuan Lin, and Kuo-Chun Chang. (2003). “An improved capacity spectrum method for ATC-40,” Earthquake Engineering & Structural Dynamics, Vol. 32, Issue 13, pp. 2013-2025.
[70] Yu-Yuan Lin , Kuo-Chun Chang, and Yuan-Li Wang. (2003). “Comparison of displacement coefficient method and capacity spectrum method with experimental results of RC columns,” Earthquake Engineering & Structural Dynamics, Vol. 33, Issue 1, pp. 35-48.
[71] Yunfeng Zhang, and Iwan, W. D. (2002). “Active Interaction Control of Tall Buildings Subjected to Near-Field Ground Motions,” ASCE, Journal of Structural Engineering, Vol. 128, No. 1, pp. 69-79.
[72] Yunfeng Zhang, and Iwan, W. D. (2002). “Protecting Base-Isolated Structures from Near-Field Ground Motion by Tuned Interaction Damper,” ASCE, Journal of Engineering Mechanics, Vol. 128, No. 3, pp. 287-295.
[73] 中華民國建築學會(1995),1995年1月17日日本阪神大地震勘災訪問報告。
[74] 中華民國鋼結構工程學會(2002),921集集地震結構勘災心得研討會。
[75] 日本建築研究振興協會(2000),鋼筋コンクリート造建築物の性能評価ガイドライン,日本建設省大臣官房技術調查室,東京。
[76] 宋裕祺(2003),以結構性能為目標的橋梁耐震設計與耐震能力評估,國立台灣大學土木工程學研究所博士論文。
[77] 宋裕祺、蔡益超(2004),橋梁結構性能耐震設計,結構工程期刊第十九卷 第一期,第41-73頁。
[78] 宋裕祺,蘇進國,吳傳威,蔡益超(2004),以結構性能為基準之鋼筋混凝土建築物耐震能力評估,中華民國建築學會「建築學報」,第五十期,pp.35~47。
[79] 宋裕祺,劉光晏,蘇進國,蔡益超,張國鎮(2004),鋼筋混凝土柱側推分析之研究與探討,中華民國建築學會「建築學報」,第46期,pp.47~65。
[80] 柴田明德(1986),最新耐震構造解析,森北出版株式會社。
[81] 國家地震工程研究中心(1994),1994年元月美國洛杉磯北嶺地震震災訪查報告書。
[82] 蔡益超、張國鎮、張荻薇、宋裕祺(2004),鐵路橋梁耐震設計規範修訂草案之研究,交通部高速鐵路工程局委託。
論文全文使用權限:不同意授權