現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:非飽和紅土剪力強度之研究-以林口台地為例 [以論文名稱查詢館藏系統]
論文英文名稱:A Study on the Shear Strength of Linkou Terrace Unsaturated Lateritic Soil [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
中文姓名:游淳名
英文姓名:Chun-Ming Yu
研究生學號:92428033
學位類別:碩士
語文別:英文
口試日期:2005-12-11
論文頁數:187
指導教授中文名:魏敏樺
指導教授英文名:Meen-Wah Gui
口試委員中文名:盧之偉;陳文仁
口試委員英文名:Chih-Wei Lu;Wen-Jen Chen
中文關鍵詞:非飽和土壤剪力強度三軸試驗基質吸力林口台地紅土
英文關鍵詞:Unsaturated SoilShear StrengthTriaxial TestMatric SuctionLinkou TerraceLateritic Soil
論文中文摘要:近年來臺灣由於經濟蓬勃發展、居住品質提昇及休閒旅遊盛行,致使許多坡地開發案孕育而生,但在開發設計的同時卻無考慮坡地非飽和殘積土壤之工程性質,因此隱藏了水土保持不當與坡地滑動之潛在危險。紅土為殘積土的一種,而臺灣地區紅土分布於西部一帶,其中林口台地為最大紅土台地之一,該台地之地下水位通常很深,以致地下水位上之紅土層通常呈現非飽和狀態,在大氣壓力下,這些非飽和土層中之初始孔隙水壓力通常為負值,而這負孔隙水壓力(基質吸力)在平時能增加土壤剪力強度,提高土坡之穩定性,但在發生連續降雨期後,地表雨水入滲至土層中,使土層原有之基質吸力減少,連帶降低土壤剪力強度,導致土坡發生滑動破壞,因此建構紅土之非飽和與飽和狀態之剪力強度為一項相當重要且急迫之課題。由於其主要紅土於USCS分類上屬CH,故本文針對CH的林口紅土為主要研究對象。將針對林口紅土台地所取得之現地不擾動土樣,透過改良式傳統三軸試驗儀,來探討在不同基質吸力下紅土之剪力強度變化情形,並搭配兩種控制不同含水量之擾動紅土做剪力強度之比較。接著以試驗所得之土壤水份特性曲線來預測紅土之非飽和剪力強度,並與三軸試驗結果作比較。最後建議將此量化之非飽和紅土剪力強度參數應用於工程實務上,使坡地設計開發能更精確地使用適當之土壤強度參數。
論文英文摘要:Due to rapid economics development, the enhancement of living quality and the demand on leisure traveling have resulted in massive hillside developments. Therefore, potential hazards such as improper water conservation and sliding of slopes are therefore followed. So, the engineering behavior of the soil slopes has become the most important discussion topic. Lateritic soil is a kind of residual soils that is widely distributed in the western part of Taiwan, in which Linkou terrace is the largest of them. The water table of Linkou terrace is very deep and hence the upper part of the soil layer is found in an unsaturated state. The negative pore water pressure (matric suction) contribute to the shear strength in general, but during rainy seasons, water infiltrate into the soil and reduce the matric suction and hence the shear strength. For this reason, the understanding of the shear strength behavior of the saturated and unsaturated lateritic soils is necessary. In this study, high plasticity lateritic soil (CH) was obtained from Linkou terrace and tested with a modified triaxial system at various matric suction levels. The shear strength was also estimated from the SWCC using various empirical equations and compared with the laboratory results. Good comparison has been obtained. Finally, an extended Mohr-Coulomb envelope for the study lateritic soil was also proposed.
論文目次:摘 要 i
Abstract iii
Acknowledgements v
Table of Contents vii
List of Tables xi
List of Figures xiii
List of Symbols and Abbreviations xix
Chapter 1 Introduction 1
1.1 General 1
1.2 Objectives of Study 1
1.3 Methodology 2
1.4 Layout of Thesis 2
Chapter 2 Literature Review 5
2.1 Introduction 5
2.2 Composition of Unsaturated Soil 5
2.3 Theory of Unsaturated Soil 7
2.3.1 Theory of Soil Suction 7
2.3.2 Soil-Water Characteristic Curve 8
2.4 Shear Strength of Unsaturated Soil 12
2.4.1 Stress State of Unsaturated Soil 12
2.4.2 Failure Envelope for Unsaturated Soils 13
2.4.3 Triaxial Tests on Unsaturated Soils 18
2.4.4 Stress Paths for Triaxial Tests 19
2.4.5 Selection of Strain Rate 22
2.4.6 Previous Research on Shear Strength of Unsaturated Soils 22
2.5 Lateritic Soil 25
2.5.1 Physical Properties of Lateritic soil 27
2.5.2 Chemical Properties of Lateritic soil 29
2.5.3 Engineering Properties of Lateritic soil 30
Chapter 3 Testing Program 33
3.1 Introduction 33
3.2 Field Drilling 35
3.2.1 Geology of Linkou Terrace 35
3.2.2 Drilling 36
Chapter 4 Results and Discussions 39
4.1 Introduction 39
4.2 Results of Physical and Chemical Properties 39
4.3 Results of Compaction Test 43
4.4 Results of Soil-Water Characteristic Curve Tests 44
4.4.1 Results of Field Suction Test 44
4.4.2 Results of Filter Paper Test 47
4.4.3 Results of Tempe Pressure Cell Test 48
4.4.4 Results of Pressure Plate Extractor Test 53
4.4.5 Results of Salt Solution Method 56
4.5 Results of Swelling Test 60
4.6 Results of Shrinkage Test 64
4.7 Results of Triaxial Test 69
4.7.1 Results of Triaxial CU Test for Series A Specimens 69
4.7.2 Results of Triaxial CU Test for Series B Specimens 77
4.7.3 Results of Triaxial CU Test for Series C Specimens 84
4.7.4 Results of CD Test 91
4.7.5 Summary of Triaxial Test 93
4.8 Summary 98
4.8.1 Physical and Chemical Properties 98
4.8.2 Compaction Test 99
4.8.3 SWCC Test 99
4.8.4 Swelling Test 99
4.8.5 Shrinkage Test 100
4.8.6 Triaxial Test 100
Chapter 5 Estimations of Shear Strength 101
5.1 Introduction 101
5.2 Estimating SWCC from Grain-Size Distribution 101
5.2.1 Models for Grain-Size Distribution and SWCC 102
5.2.2 Predicted and Experimental Results 108
5.3 Other Fitting Equations for SWCC 110
5.3.1 Selected Fitting Models for this Study 113
5.3.2 Results of the Fitting SWCC 115
5.4 Predictions of Shear Strength from SWCC 120
5.4.1 Literature Review 120
5.4.2 Results of the Prediction 122
5.5 Comparison of Shear Strength 124
5.6 Summary 128
Chapter 6 Conclusions and Recommendations 129
6.1 Conclusions 129
6.2 Recommendations 130
References 133
Appendix Testing Apparatus and Procedures 141
A.1 Soil Physical Properties Tests 141
A.1.1 Water Content Test 141
A.1.2 Specific Gravity Test 142
A.1.3 Grain-Size Distribution Test 143
A.1.4 Atterberg Limit Test 144
A.1.5 Unified Soil Classification System 146
A.2 Compaction Test 148
A.2.1 Testing Objective and Applications 148
A.2.2 Apparatus 149
A.2.3 Procedures 149
A.3 Tests of Soil Suction 150
A.3.1 Field Suction Test 150
A.3.2 Filter Paper Test 152
A.3.3 Tempe Pressure Cell Test 154
A.3.4 Pressure Plate Extractor Test 157
A.3.5 Salt Solution Method 161
A.4 Swelling Tests 164
A.4.1 Testing Objective and Applications 164
A.4.2 Apparatus 165
A.4.3 Procedures 165
A.5 Shrinkage Tests 167
A.5.1 Testing Objective and Applications 167
A.5.2 Apparatus 168
A.5.3 Procedures 169
A.6 Triaxial CU Test for Saturated Soil 170
A.6.1 Testing Objective and Applications 170
A.6.2 Apparatus 170
A.6.3 Procedures 171
A.7 Triaxial CU Test for Unsaturated Soil 173
A.7.1 Testing Objective and Applications 173
A.7.2 Apparatus 173
A.7.3 Procedures 176
A.8 Triaxial CD Test 178
A.8.1 Testing Objective and Applications 178
A.8.2 Apparatus 178
A.8.3 Procedures 179
作 者 簡 介 181
論文參考文獻:[1] Agus, S. S., Leong, E. C., and Rahardjo, H. (2001). “Soil-Water Characteristic Curve of Singapore Residual Soils.” Geotechnical and Geological Engineering, Vol. 19, p.285-309.
[2] Arya, L. M., and Paris, J. F. (1981). “A Physico-Empirical Model to Predict the Soil Moisture Characteristic from Particle-Size Distribution and Bulk Density Data.” Soil Science Society of America Journal, Vol. 45, p.1023-1030.
[3] Arya, L. M., Leij, F. J., van Genuchten, M. Th., and Shouse, P. J. (1999). “Scaling Parameter to Predict the Soil-Water Characteristic from Particle-Size Distribution Data.” Soil Science Society of America Journal, Vol. 63, p.510-519.
[4] ASTM. C114-03 (2003). “Standard Test Method of Chemical Analysis of Hydraulic Cement.” West Conshohocken. Pa.
[5] ASTM. D422-63 (2002). “Standard Test Method for Particle-Size Analysis of Soils.” West Conshohocken. Pa.
[6] ASTM. D854-92 (2002). “Standard Test Method for Specific Gravity of Soils.” West Conshohocken. Pa.
[7] ASTM. D1557-91 (2002). “Standard Test Method for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lb/ft3 (2,700 kN-m/m3))1.” West Conshohocken. Pa.
[8] ASTM. D1586-99 (2002). “Standard Test Method for Penetration Test and Split-Barrel Sampling of Soils.” West Conshohocken. Pa.
[9] ASTM. D2216-92 (2002). “Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil.” West Conshohocken. Pa.
[10] ASTM. D2487-93 (2002). “Standard Classification of Soils for Engineering Purposes (Unified Soil Classification System).” West Conshohocken. Pa.
[11] ASTM. D2850-95 (2002). “Standard Methods for Unconsolidated, Undrained Triaxial Compression Test on Cohesive Soils.” West Conshohocken. Pa.
[12] ASTM. D2976-71 (2003). “Standard Test Method for pH of Peat Materials.” West Conshohocken. Pa.
[13] ASTM. D4318-95 (2002). “Standard Test Method for Liquid Limit, and Plasticity Index of Soils.” West Conshohocken. Pa.
[14] ASTM. D4546-96 (2002). “Standard Methods for One-Dimensional Swell or Settlement Potential of Cohesive Soils.” West Conshohocken. Pa.
[15] ASTM. D5298-94 (2002). “Standard Methods for Measurement of Soil Potential (Suction) Using Filter Paper.” West Conshohocken. Pa.
[16] ASTM. D6196 (2002). “Standard Practice for the Sampling and Analysis of VOCs in Air by Pumped Sorbent Tube and Thermal Desorption.” West Conshohocken. Pa.
[17] ASTM. D6836-02 (2002). “Standard Methods for Determination of the Soil Water Characteristic Curve for Desorption Using a Hanging Column, Pressure Extractor, Chilled Mirror Hygrometer, and/or Centrifuge.” West Conshohocken. Pa.
[18] Bishop, A. W. (1955). “The Use of the Slip Circle in the Stability Analysis of Slope.” Geotechnique, Vol. 5, p.7-17.
[19] Escario, V. and Juca, J. (1989). “Strength and Deformation of Partly Saturated Soils.” Proc. 12th International Conference on Soil Mechanics and Foundation Engineering, Rio de Janeiro, Vol. 3, p.43-46.
[20] Fawcett, R. G. and Collis-George, N. (1967). “A Filter-Paper Method for Determining the Moisture Characteristics of Soil.” Australian Journal of Experimental Agriculture and Animal Husbandry, Vol. 7, p.162–167.
[21] Fredlund, M. D., Fredlund, D. G., and Wilson, G. W., (1997). “Prediction of the Soil-Water Characteristic Curve from Grain-Size Distribution and Volume-Mass Properties.” 3rd Brazilian Symposium on Unsaturated Soils, Rio de Janeiro, April 22-25.
[22] Fredlund, M. D., Fredlund, D. G., and Wilson, G. W., (2000). “An Equation to Represent the Grain-Size Distribution.” Canadian Geotechnical Journal, 37, p.817-827.
[23] Fredlund, D. G. and Morgenstern, N. R. (1978). “Stress State Variable for Unsaturated Soils.” ASCE J. of Geotechnical Engineering, Geotechnical Division, GT11, p.1415-1416.
[24] Fredlund, D. G., Morgenstern, N. R. and Widger, R. A. (1978). “The Shear Strength of Unsaturated Soils.” Canadian Geotechnical Gournal, 15, p313-321.
[25] Fredlund, D. G.. and Rahardjo, H. (1993). “Soil Mechanics for Unsaturated Soils.” John Wiley and Sons, New York.

[26] Fredlund, D. G.., Wulfsohn, D. and Adams, B. A. (1998). “Triaxial Testing of Unsaturated Agricultural Soils.” Journal of Agricultural Engineering, Vol. 69, p.317-330.
[27] Fredlund, D. G.. and Xing, A. (1994). “Equations for the Soil-Water Character Curve.” Canadian Geotechnical Journal, Vol. 31, p.521-532.
[28] Fredlund, D. G., Xing, A., Fredlund, M. D., and Barbour, S. L. (1995). “The Relationship of the Unsaturated Soil Shear Strength to the Soil-Water Characteristic Curve.” Canadian Geotechnical Journal, Vol. 32, p.440-448.
[29] Gidigasu, M. D. (1976). “Lateritic soil Soil Engineering.” Elsevier Scientific Publishing Company, Amsterdam Oxford New York, p.35-358.
[30] Gui, M. W., Chen, S. L. and Chang, W. T. (2003). “Preliminary Study of a Collapsed Lateritic Slope in Taiwan.” Proc. of Int. Conf. on Slope Engineering, Hong Kong, p.654-659.
[31] Gui, M. W. and Chu, H. A. (2005). “Preliminary Study on the Swelling/Shrinkage Property of Taiwan Lateritic Soil.” Proc. of Int. Conf. on Problematic Soils, N. Cyprus.
[32] Hamblin, A. P. (1981). “Filter-paper Method for Routine Measurement of Filed Water Potential.” Journal of Hydrology, Vol. 52, p.355-360.
[33] Haverkamp, R., and Parlange, J. Y. (1986) “Predicting the Water Retention Curve from Particle-Size Distribution: 1. Sandy Soils without Organic Matter.” Soil Science, Vol. 142, p.325-339.
[34] He, L. C. (1999). “Evaluation of Instrument for Measurement of Suction in Unsaturated Soils”, MEng Thesis, School of Civil and Structural Engineering, Nanyang Technological University, Singapore.
[35] Ho, D. Y. F. and Fredlund, D. G. (1982). “Increase in Strength Due to Suction for Two Hong Kong Soils.” Proc. of ASCE Speciality Conference on Engineering and Construction in Tropical and Residual Soils, Hawaii, p.263-296.
[36] Jeau-Louis Briaud, fellow ASCE, Xiong Zhang and Sangho Moon (2003). “Shrink Test-Water Content Method for Shrink and Swell Predictions.” ASCE J. of Geotechnical and Geoenvironmental Engineering, p.590-600.
[37] Laboratório Nacional de Engenharia Civil (LNEC) et al Portugal (1969). “Portuguese Studies on Engineering Properties of Lateritic Soils.” Proc. Int. Conf. Soil. Mech. Found. Eng., Mexico, p.85-96.
[38] Leong, E. C. and Rahardjo, H. (1997). “Review of Soil-Water Characteristic Curve Equations.” ASCE J. of Geotechnical and Geoenvironment Engineering, p.1106-1117.
[39] Maâtouk, A., Leroueil, S. and La Rochelle, P. (1995). “Yielding and Critical State of a Collapsible Unsaturated Silty Soil.” Geotechnique, Vol. 45, No. 3, p.465-477.
[40] Maignien, R. (1966). “Review of Research on Lateritic soils.” Natural Resoures Research IV, United Nations Educational and Cultural Organization, Paris.
[41] Martin, F. J. and Doyne, H. C. (1930). “Lateritic soil and Lateritic Soils in Sierra Leone.” 2. J. Agric, Sci , 20; p.135-143 (from Gidigasu 1976).
[42] Melinda, F., Rahardjo, H., Han, K. K. and Leong, E. C. (2004). “Shear Strength of Compacted Soil under Infiltration Condition.” ASCE J. of Geotechnical and Geoenvironment Engineering, p.1-11.
[43] Miao, L. C., Liu, S. Y. and Lai, Y. M. (2002). “Research of Soil-Water Characteristics and Shear Strength Features of Nanyang Expansive Soil.” ASCE J. of Geotechnical and Geoenvironment Engineering, p.261-267.
[44] Ng, Charles W. W. and Chiu, Abraham C. F. (2001). “Behavior of a loosely Compacted Unsaturated Volcanic Soil.” ASCE J. of Geotechnical and Geoenvironment Engineering, p.1027-1036.
[45] Ng, Charles W. W. and Chiu, Abraham C. F. (2003). “Laboratory Study of Loose Saturated and Unsaturated Decomposed Granitic Soil.” ASCE J. of Geotechnical and Geoenvironment Engineering, p.550-559.
[46] Rahardjo, H. and Han, K. K. (1995). “Shear Strength of Unsaturated Soils as It Applies to Slope Stability Analysis.” Key Lecture, Proc. of Symposium on Unsaturated Soil Behavior and Applications, Nairobi, Kenya, p.57-87.
[47] Rahardjo, H., Lim, T. T., Chang, M. F. and Fredlund, D. G. (1995). “Shear Strength Characteristics of a Residual Soil.” Canadian Geotechnical Journal, Vol. 32, p.60-77.
[48] Scheinost, A. C., Sinowski, W., Auerswald, K. (1997). “Regionalization of Soil Water Retention Curves in a Highly Variable Soilscape.” I. Developing a new pedotransfer function, Geoderma, 78, p.129-143.
[49] Tekinsoy, M. A., Kayadelen, C., Keskin, M. S. and Söylemez, M. (2004). “An equation for Predicting Shear Strength Envelope with Respect to Matric Suction.” J. of Computers and Geotechnics 31, p.589-593.
[50] Terzaghi, K. (1936). “The Shear Resistance of Saturated Soils.” Proceedings, 1st International Conference on Soil Mechanics and Foundation Engineering, Cambridge, Vol. 1, p.54-56.
[51] Toll, D. G. (1990). “A Framework for Unsaturated Soil Behavior.” Geotechnique, Vol. 40, No. 1, p.31-44.
[52] Vanapalli, S. K., Fredlund, D. G., Pufahl, D. E. and Clifton, A. W. (1996). “Model for the Prediction of Shear Strength with Respect to Soil Suction.” Can. Geotech, Vol. 33, p.379-392.
[53] van Genuchten, M. T. (1980). “A Closed-Form Equation for Predicting Hydraulic Conductivity of Unsaturated Soils.” Journal of Soil Science Society of America, Vol. 44, p.892-898.
[54] Wheeler, S. J. and Sivakumar, V. (1995). “An Elasto-Plastic Critical State Framework for Unsaturated Soil.” Geotechnique, Vol. 45, No. 1, p.35-53.
[55] Wheeler, S. J. and Sivakumar, V. (2000). “Influence of Compaction Procedure on the Mechanical Behavior of an Unsaturated Compacted Clay. Part 2: Shearing and Constitutive Modelling.” Geotechnique, Vol. 50, No. 4, p.369-376.
[56] White, N. F., Duke, H. R., Sunada, D. K., and Corey, A. T. (1970). “Physics of Desaturation in Porous Materials.” Journal of the Irrigation and Drainage Division, ASCE, 96(IR2): p.165-191.
[57] 王慶麟(1984),林口紅土台地邊坡穩定性分析及其土壤特性之研究,碩士論文,國立臺灣大學土木工程研究所。
[58] 朱信安(2004),林口台地非飽和紅土特性之研究,碩士論文,國立臺北科技大學土木與防災研究所,臺北。[論文引用為Chu (2004)]
[59] 沈茂松(1988),實用土壤力學試驗,文笙書局,臺北。
[60] 林宏達、拱祥生(2001),不飽和土壤力學性質試驗及其在邊坡工程之應用,地工技術83期,臺北。
[61] 林四川、周功台、唐嘉俊、詹尚宏、廖瑞堂(2001),國立臺北藝術大學網球場下邊坡坍滑原因鑑定及長期整治方案建議工作報告書,臺北市大地工程技師公會,臺北。
[62] 洪如江(1967),臺灣北部(濁水溪以北)紅棕土之物理特性,國科會專題研究報告,臺北。
[63] 洪如江(1996),土力學試驗,科技圖書公司,臺北。
[64] 施國欽(1986),低塑性林口紅土礫石材料夯實與力學性質之室內試驗研究,碩士論文,國立臺灣工業技術學院營建工程技術研究所,臺北。
[65] 施國欽(1996),大地工程學 (一) 土壤力學篇,文笙書局,臺北。
[66] 拱祥生、林宏達、吳宏偉(2003),不飽和土壤邊坡基質吸力量測及其在邊坡穩定分析之應用,地工技術96期,臺北。
[67] 拱祥生(1999),降雨對不飽和土壤邊坡穩定性之影響研究,碩士論文,國立臺灣科技大學營建工程研究所,臺北。
[68] 馬偕醫學院(2003),馬偕醫學院(Mackay College of Medicine)校園整體開發建築計畫加強山坡地雜項執照審查報告書,三椏工程顧問公司,臺北。
[69] 連健淵(2000),不飽和土壤變形參數之研究,碩士論文,國立交通大學土木工程研究所,新竹。
[70] 翁作新(1985),林口紅土微觀土粒結構之研究,行政院國家科學委員會防災科技研究報告73-54號(國立臺灣大學土木工程研究所執行),臺北。
[71] 張文濤(2004),基質吸力對於邊坡穩定性之研究-以林口台地為例,碩士論文,國立臺北科技大學土木與防災研究所,臺北。
[72] 許海龍(1988),重模與不擾動紅土之動態工程特性之研究,行政院國家科學委員會防災科技研究報告76-0410-E009-15號(國立交通大學土木工程研究所執行),臺北。
[73] 許傳榮(1995),塑性指數對部份飽和礫石土抗剪強度之影響,碩士論文,國立中興大學土木工程研究所,臺中。
[74] 陳文政(1990),臺灣地質圖說明書圖幅第二號大園,經濟部中央地質調查所,臺北。
[75] 陳冠閔(2001),塑性指數(PI)對未飽和紅土抗剪強度之影響,碩士論文,國立中興大學土木工程研究所,臺中。
[76] 陳榮河(1990),紅土台地坍方防治方法之綜合研究,行政院國家科學委員會防災科技研究報告78-0414-P-002-26B號(國立臺灣大學土木工程研究所執行),臺北。
[77] 黃志忠(2003),未飽和紅土吸、脫附段抗剪強度行為之研究,碩士論文,國立中興大學土木工程研究所,臺中。
[78] 黃隆茂(1992),部份飽和夯實礫石土之抗剪強度,碩士論文,國立中興大學土木工程研究所,臺中。
[79] 萬獻銘、陳淑華(1988),林口台地礫石風化之礦物學及化學特性研究及其與紅土形成之關係,第八卷,第一期至第二期,第27-47頁。
[80] 劉家男(1990),林口台地邊坡坍方之綜合研究,碩士論文,國立臺灣大學土木工程研究所,臺北。
[81] 鄭誠泰(2004),土壤塑性對未飽和紅土吸、脫附段抗剪強度行為之研究,碩士論文,國立中興大學土木工程研究所,臺中。
[82] 歐章煜(1979),臺灣北部紅土之強度與滲透性之研究,碩士論文,國立成功大學土木工程研究所,臺南。
[83] 臺北市立桃源國民中學(1999),臺北市立桃園國中後方邊坡既有邊坡擋土牆補充鑽探地質調查及分析報告書,富國技術工程公司,臺北。
[84] 顏嘉男(2003),土壤塑性指數對臺灣紅土濕陷性行為之影響,碩士論文,國立中興大學土木工程研究所,臺中。
[85] 謝孟達(1989),紅土填方坡與開挖坡安全性之研究,碩士論文,國立臺灣大學土木工程研究所。
[86] 謝豪榮、吳建興(1984 ~ 1987),林口紅土台地邊坡穩定及其土壤特性之研究,行政院國家科學委員會防災科技研究報告73-28號(國立中興大學水土保持學研究所執行),臺北。
[87] 蘇大展(1997),細料含量對部份飽和礫石土抗剪強度之影響,碩士論文,國立中興大學土木工程研究所,臺中。
論文全文使用權限:同意授權於2006-01-12起公開