現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:HHT-α積分法之非線性數值特性 [以論文名稱查詢館藏系統]
論文英文名稱:Numerical Properties of HHT-α Method for Nonlinear Systems [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
中文姓名:歐瀚文
英文姓名:Han-Wen Ou
研究生學號:92428002
學位類別:碩士
語文別:中文
口試日期:2006-07-10
論文頁數:63
指導教授中文名:張順益
口試委員中文名:廖文義;簡文郁
中文關鍵詞:HHT-α 積分單步非線性變化程度收斂度
英文關鍵詞:HHT-α integral methodstep degree of nonlinearitystep degree of convergence
論文中文摘要:在本論文中,探討Hilber、Hughes與Taylor所提出的積分法(簡稱HHT-α積分法)在求解非線性結構系統時的數值特性,為了要評估非線性系統,本論文定義兩個新參數,其中一個參數名為單步非線性變化程度(step degree of nonlinearity),用來描述結構勁度在積分時間步長內的變化情形;另一個參數名為收斂度(step degree of convergence),用來描述非線性系統逐步積分求解的反覆疊代過程中,其收斂勁度與正確勁度的接近程度。在引入這兩個新參數後,HHT- 積分法應用於非線性系統時,才能評估其數值特性。
因為非線性關係的考量,在實際計算時可有兩種不同的計算方式。方法一為HHT-α積分法的運動方程式中,其勁度被假設使用同樣的 ,而方法二在實際的運用上將HHT-α積分法的運動方程式之勁度跟隨著位移而定。本文利用這兩個方法,進一步探討HHT-α積分法在求解非線性結構系統的數值特性。
本文使用數值釋例證實評估結果,在基本的評估後,本文推斷方法一在任何的單步非線性變化程度和收斂度之下都是無條件穩定,而且不管是在線彈性或非線性系統之下都擁有數值消散特性;而方法二在內部勁度軟化的情況下,會發生數值的不穩定。所以經過這些評估可以驗證方法一比方法二具有較好的數值特性。
論文目次:目 錄

摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
圖目錄 vi
第一章 緒 論 1
1.1 研究動機與目的 1
1.2 文獻回顧 3
1.3 研究內容概述 3
第二章 HHT-α積分法 5
2.1 HHT-α積分法簡介 5
2.2 HHT-α積分法的線性數值特性 6
第三章 HHT-α積分法之非線性數值特性 9
3.1 方法一的數值特性 10
3.2 方法二的數值特性 15
3.3 數值特性比較 19
第四章 HHT-α積分法之數值模擬 36
4.1 數值釋例一 36
4.1.1 給定初始位移之兩層剪力屋架 37
4.1.2 受到一簡諧荷重之兩層剪力屋架 38
4.2 數值釋例二 39
4.2.1 自由振動下之兩層剪力屋架 39
4.2.2 自由振動下之五層剪力屋架 40
第五章 結 論 60
參考文獻 61
論文參考文獻:[1] Bathe K.J. and Wilson E.L.(1973), “Stability and Accuracy Analysis of Direct Integration Methods,” Earthquake Engineering and Structural Dynamics, Vol. 1, pp. 283-291.
[2] Belytschko T. and Schoeberle D.F.(1975), “On the Unconditional Stability of An Implicit Algorithm for Nonlinear Structural Dynamics,” Journal of Applied Mechanics, Vol. 17, pp. 865-869.
[3] Belytschko T. and Hughes T.J.R.(1983), Computational Methods for Transient Analysis, Elsevier Science Publishers B.V., North-Holland.
[4] Burden R.L. and Faires J.D.(1989), Numerical Analysis, PWS-KENT Publishing Company, Boston.
[5] Chung J. and Hulbert G.M.(1993), “A Time Integration Algorithm for Structural Dynamics with Improved Numerical Dissipation: The Generalized-α Method.” Journal of Applied Mechanics, Transactions of the ASME, Vol. 60, pp. 371-375.
[6] Clough R.W. and Penzien J.(1993), Dynamics of Structures, McGraw-Hill, Inc, International Editions.
[7] Chang S.Y.(1996), “A Series of Engergy Conserving Algorithms for Structural Dynamics,” Journal of the Chinese Institute of Engineers, Vol. 19, No. 2, pp. 219-230.
[8] Chang S.Y.(1997), “Improved Numerical Dissipation for Explicit Methods in Pseudodynamic Tests,” Earthquake Engineering and Structural Dynamics, Vol. 26, pp. 917-929.
[9] Chopra A.K.(2001), Dynamics of Structures, Prentice Hall, 2nd Edition.
[10] Chang S.Y.(2002), “Explicit Pseudodynamic Algorithm with Unconditional Stability,” Journal of Engineering Mechanics, ASCE, Vol. 128, No.9, pp. 935-947.
[11] Dahlquist G.(1963), “A Special Stability Problem for Linear Multistep Methods,” BIT, 3, pp. 27-43.
[12] Dobbs M.W.(1974), “Comments on ‘Stability and Accuracy Analysis of Direct Integration Methods,’ by Bathe and Wilson,” Earthquake Engineering and Structural Dynamics, Vol. 2, pp. 295-299.
[13] Goudreau G.L. and Taylor R.L.(1972), “Evaluation of Numerical Integration Methods in Elasto- dynamics,” Computer Methods in Applied Mechanics and Engineering, Vol. 2, pp. 69-97.
[14] Houbolt J.C.(1950), “A Recurrence Matrix Solution for the Dynamic Response of Elastic Aircraft,” Journal of the Aeronautical Sciences, Vol. 17, pp. 540-550.
[15] Hilber H.M.(1976), “Analysis and Design of Numerical Integration Methods in Structural Dynamics.” Report No. EERC 76-29, Earthquake Engineering Research Center, University of California, Berkeley, CA.
[16] Hughes T.J.R.(1976), “Stability, Convergence and Growth and Decay of Energy of the Average Acceleration Method in Nonlinear Structural Dynamics,” Computer & Structures, Vol. 6, pp. 313-324.
[17] Hilber H.M., Hughes T.J.R., and Taylor R.L.(1977), “Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics,” Earthquake Engineering and Structural Dynamics, Vol. 5, pp. 283-292.
[18] Hilber H.M. and Hughes T.J.R.(1978), “Collocation, Dissipation, and ‘Overshoot’ for Time Integration Schemes in Structural Dynamics,” Earthquake Engineering and Structural Dynamics, Vol. 6, pp. 99-118.
[19] Hughes T.J.R.(1987), The Finite Element Method, Prentice-Hall, Inc., Englewood Cliffs, N.J.
[20] Krieg R.D.(1973), “Unconditional Stability in Numerical Time Integration Methods,” Journal of Applied Mechanics, Vol. 40, pp. 417-421.
[21] Newmark N.M.(1959), “A Method of Computation for Structural Dynamics,” Journal of Engineering Mechanics Division, ASCE, Vol. 85, pp. 67-94.
[22] Ortega J.M.(1972), Numerical analysis – A second course, Academic Press, New York.
[23] Park K.C.(1975), “An Improved Stiffly Stable Method for Direct Integration of Nonlinear Structural Dynamic Equations,” Journal of Applied Mechanics, Vol. 42, pp. 464-470.
[24] Strang G.(1986), Linear Algebra and Its Applications, Harcourt Brace Jovanovich, San Diego.
[25] Shing P.B. and Mahin S.A.(1987), “Elimination of Spurious Higher-Mode Response in Pseudodynamic Tests.” Earthquake Engineering and Structural Dynamics, Vol. 15, pp. 425-445.
[26] Wilson E.L.(1968), “A Computer Program for the Dynamic Stress Analysis of Underground Structures,” SESM Report No. 68-1, Division Structural Engineering and Structural Mechanics, University of California, Berkeley.
[27] Wilson E.L., Farhoomand I., and Bathe K.J.(1973), “Nonlinear Dynamic Analysis of Complex Structures,” Earthquake Engineering and Structural Dynamics, Vol. 1, pp. 241-252.
[28] Wood W.L., Bossak M., and Zienkiewicz O.C.(1981), “An Alpha Modification of Newmark’s Method,” International Journal for Numerical Methods in Engineering, Vol. 15, pp. 1562-1566.
[29] Zienkiewicz O.C.(1977), The Finite Element Method, McGraw-Hill Book Co (UK) Ltd. Third Edition.
[30] Zienkiewicz O.C.(1977), “A New Look at the Newmark, Houbolt and Other Time Stepping Formulas. A Weighted Residual Approach,” Earthquake Engineering and Structural Dynamics, Vol. 5, pp. 413-418.
[31] 張順益(2001),“無條件穩定外顯式積分法之發展”,中國土木水利工程學刊,第十三卷,第一期,第61~70頁。
[32] 張順益(2002),“非線性動力分析之評估技巧”,中國土木水利工程學刊,第十四卷,第三期,第467~475頁。
論文全文使用權限:同意授權於2006-08-02起公開